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I-1- Définition : 

Chafa Azzedine- Faculté de Physique- 
USTHB 

La dynamique est une  branche de la mécanique qui 
étudie les mouvements des corps dans l’espace en 
fonction du temps en expliquant les causes qui les 
provoquent.  
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Historiquement, l’étude des mouvements des planètes a permis d’établir les lois 
cinématiques et dynamiques 

I-2-Historique : 



II –1- Principe d’inertie 
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1-a-Expérience  du principe 

h h h h 

 
Si une particule n’est soumise à aucune interaction: 
 
-Soit elle reste au repos 
 

-Soit elle continue à se déplacer suivant une droite et avec une vitesse 
constante 

v

1-b-Enoncé du principe 
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1-c-Référentiel d’inertie ou Galiléen 

Les repères dans lesquels une particule libre se déplace à vitesse constante sont 
appelés repères Galiléen ou d’inertie 

Ces repères sont soit au repos, soit animés d’un mouvement de translation uniforme 

Exemple:  
 Le repère lié au sol satisfait à la définition et est donc un bon repère 
d’inertie 
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II-2-Quantité de mouvement : 

2-a-Notion de masse : 

Il faut analyser, d’une manière dynamique, le mouvement d’un corps. 

La cause qui modifie la grandeur ou la direction de la vitesse d’un objet est:  
   La force 

La masse est un coefficient qui distingue un objet d’un autre. Elle caractérise 
l’inertie du corps. 

C’est-à-dire sa résistance à s’opposer à tout changement  provoqué par la 
vitesse. Elle est très importante lors de l’étude dynamique. 
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2-b- Quantité de mouvement 

Elle est définie comme le :produit de la masse par la vitesse : 

( / )P mv kgm s
v

P

P et v : sont parallèles et dans le même sens 

 

Une particule libre se déplace avec une quantité de mouvement constante dans 
un repère Galiléen   

Le principe d’inertie s’écrit : 
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8 Avant interaction pendant interaction Aprés interaction 

Au début les deux sont attachés par une ficelle 
 
La masse du disque O est double de celle du 
disque   

 

2-c- Conservation de la quantité de mouvement 
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On cherche la quantité de mouvement totale du système dans les trois phases 

Mo = 2 Mx 

Pour déterminer la vitesse on calcule les distances parcourues entre deux 
positions successives de chaque masse 

Avant  interaction : 

0
o

o o o

d
P m v m

t
 



x
x x x x

d
P m v m

t
 



Si do et dx sont les distances parcourues par chaque disque respectivement 
pendant le temps t : 

T o xP P P  

2-c- Conservation de la quantité de mouvement 
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Pendant   interaction : 

0

'
' ' o
o o o

d
P m v m

t
 



'
' ' x

x x x x

d
P m v m

t
 



' ' 'T o xP P P  

2-c- Conservation de la quantité de mouvement 

" " "T o xP P P  

Aprés  interaction : 

0

'
' ' o
o o o

d
P m v m

t
 



'
' ' x

x x x x

d
P m v m

t
 


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Zones  Distances 
(cm)  

Vitesse 
(cm/s) 

Quantité de 
mvt(kgm/s) 

Avant d0= 1cm 
dx= 1cm 

Vo= 10 
Vx=10 

Po=20mx 

Px=10mx 

Pendant d0’= 1.1cm 
dx’= 1.2cm 

Vo’= 11 
Vx’=12 

Po’=22mx 

Px’=12mx 

 

aprés d0’’= 1cm 
dx’’= 1cm 

Vo’’= 10 
Vx’’=10 

Po’’=20mx 

Px’’=10mx 

M0 = 2Mx 

t=0.1 s 

Echelle : 1 cm          10 mx (kgm/s)    

2-c- Conservation de la quantité de mouvement 

On récapitule, dans le tableau suivant, les calculs effectués dans chaque phase 
en fonction de la masse mx 
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Aprés interaction 

dx 

do 

xP
oPTP

''oP'oP

'xP 'TP
''xP

''TP

Conclusion :  
La quantité de mouvement totale d’un système isolé est constante 
 

' ''T T TP P P 

2-c- Conservation de la quantité de mouvement 

Avant interaction 

pendant interaction 
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Ce principe de conservation de la quantité de mouvement est très important en 
physique. On peut également l’écrire sous la forme: 

' '' ' 'T T T o x o xP P P P P P P     

' 'o o x x x oP P P P P P      

En mettant les grandeurs de chaque disque d’un même côté on a: 

'o o oP P P   'x x xP P P  Avec :  Et : 

Donc une interaction produit un échange de quantité de mouvement entre 
particules 

2-c- Conservation de la quantité de mouvement 
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Exemple: 

Un camion et une 2 CV arrivent sur un croisement.  
Ils rentrent en collision et se déplacent dans une direction de 45° en restant 
collées l’une à l’autre comme sur la figure. 
 
Un témoin affirme que le camion roulait à 80 km/h.  
Dit – il la vérité?  

Exercice d’application: 

V
Camion M 

v2
 C

.V
 m
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V
Camion M 

v2
 C

.V
 m

 

'V

45

Corrigé de l’exercice : 

Le système est isolé donc il y conservation de la quantité 
de mouvement totale 

T c vP P P MV mv   Avant la collision : 

' ' ' ( ) 'T c vP P P M m V   Après la collision : 

Conservation : ' ( ) 'T TP P MV mv M m V    

On décompose sur ox et oy 

: ( ) 'cos (1)

: ( ) 'sin (2)

ox MV M m V

oy mv M m V





  


  

sin
(2) /(1) 45 1

cos

mv
tg

MV




      320 /

M
v V km h

m
   impossible 

Le témoin a donc menti 
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3- Notion de Force 

F

Joueur Ballon 

Le tir du joueur sur 
le ballon provoque sa 
mise en mouvement. 

C’est la force qui permet de mettre en 
mouvement le ballon. 
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Tout corps  qui n’est soumis à aucune force  est: 
-Soit au repos 
-Soit en mouvement suivant une droite avec une vitesse constante 

III- Les lois de Newton: 

III-1- Enoncés des lois de Newton: 
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Si un corps de masse m se déplace avec une vitesse    , il est soumis à une 
force  : 

v

dP dv
F m ma

dt dt
  

III- Les lois de Newton: 
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Nous avons vu que deux particules en interaction constituent un 
système isolé tel que : 

1 2P P  

Pendant un intervalle de temps t :  

1 2
1 2

P P
F F

t t

 
    

 

III- Les lois de Newton: 

Cette loi est connue soit la loi de l’action et la réaction 
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Remarques 

III-2-Toutes ces lois sont valables dans tout repère Galiléen  

Soient  deux repères Galiléens R1 et R2 et soit un mobile se déplaçant avec: 
 Une vitesse v1 dans R1 et v2 dans R2 à un instant t 
 Une vitesse v’1 dans R1 et v’2 dans R2 à un instant t’ 

Et soit v la vitesse de R2 par rapport  à R1 

En appliquant la loi de composition des vitesses on a : 

A l’instant t : 
1 2v v v 

1 2' 'v v v A l’instant t’ : 

III- Les lois de Newton: 
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Donc on a: 

   1 1 2 2 2 2( ' ) ( ' ) ( ) ' 'P m v v m v v v v m v v P          

La variation de quantité de mouvement dans R1 est : 1 1( ' )P m v v  

La variation de quantité de mouvement dans R2 est : 2 2' ( ' )P m v v  

tF F ma 

Remarque: 
Dans le cas général un corps est soumis à plusieurs forces, la 2ème loi de 
Newton s’ écrit:  

'P P  

Plus connue comme la relation fondamentale de la dynamique : (R.F.D) 

III-2-Toutes ces lois sont valables dans tout  
repère Galiléen  
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III-3- Applications des lois de Newton:  

III-3-a-Poids au voisinage de la terre: 

Le poids est la force exercée par la terre sur le corps, il s’ écrit donc :   

P ma (2ème loi de Newton)  

On réalise pour cela deux expériences: 
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1ère expérience : Chute libre sans vitesse initiale 

Après une étude cinématique des mouvements on constate 
que l’accélération est constante dans les deux cas en sens et  
direction. 

Cette accélération est connue  sous le nom d’accélération de la 
 pesanteur notée g. 

P =mg

a

a

III-3- Applications des lois de Newton:  

III-3-a-Poids au voisinage de la terre: 
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2ème  expérience : 
Chute avec vitesse initiale horizontale 

0v

Après une étude cinématique des mouvements 
on constate que l’accélération est constante 
dans les deux cas en sens et  direction. 

Cette accélération est connue  sous le nom 
d’accélération de la  pesanteur notée g. 

Exemple : 
A Alger g = 9.80 m/s2 

Au pôle nord g = 9.83 m/s2 

P =mg

a

a

III-3- Applications des lois de Newton:  

III-3-a-Poids au voisinage de la terre: 
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III-3-b- Mouvement d’un projectile au voisinage de la terre: 

III-3- Applications des lois de Newton:  

y 

O 

 

0v

0xv

0 yv
xv

yv v
xv

yv v v

yv

xv

v
xv

yv v

xv

yv v
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0 0

0

0

cos

( ) cos

x

x x

a

v v v

x t v t








 
 

0

2

0

( ) sin

1
( ) sin

2

y

y

a g

v t gt v

y t gt v t






  


  

   


Suivant ox: Mouvement horizontal: MRU 

Suivant oy: Mouvement vertical: MRUV 

III-3-b- Mouvement d’un projectile au voisinage de la terre: 

III-3- Applications des lois de Newton:  
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2
2 2
0

tan
2 cos

g
y x x

v



 

Équation de la trajectoire 

III-3-b- Mouvement d’un projectile au voisinage de la terre: 

III-3- Applications des lois de Newton:  

On élimine le temps des deux équations pour avoir y en fonction de x  

0

2

0

( ) cos

1
( ) sin

2

x t v t

y t gt v t









  
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 

0v0 yv

y 

x 

:hauteur 
maximale 

H 

porté
e 

D 

2
20H sin

2

v

g
La hauteur maximale: 

2

0D sin 2
v

g
La portée: 

0xvO 

III-3-b- Mouvement d’un projectile au voisinage de la terre: 

III-3- Applications des lois de Newton:  

En posant y = 0, dans l’équation de la trajectoire, on a 

La hauteur maximale correspond à vy =0 et on obtient: 
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2

0
max

v
D

g


15  

30  

45  

60  
y

portée maximale Dmax 

D1 

D2 

x

La portée D varie avec l’angle de tir  
pour une même vitesse initiale v0. Elle 
est maximale pour =45°: 

III-3-b- Mouvement d’un projectile au voisinage de la terre: 

III-3- Applications des lois de Newton:  
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IV-Loi de gravitation universelle: 

Terre (M) 

Un Corps en chute libre au voisinage du sol est 
soumis à la force : 

P =mg
Lune qui tourne autour de la terre  est 
soumise à la force : 

corps (m) 
R 

Lune (ml) 

r 

lF=ma

Sachant que R = 6400 km  
et r = 384 000 km donc :  

60
r

R
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l

P m g

F m a


En faisant le rapport des modules des deux forces on a: 

Or pour la lune le mouvement circulaire uniforme donc: 

2 2
2

2

4v
a r r

r T


  

Sachant que                       et que la période de rotation de la lune autour de la 

terre est                          on obtient :  

210 /g m s

24T heures

 
2

2
3600 60

g r

a R

 
    

 

IV-Loi de gravitation universelle: 



Chafa Azzedine- Faculté de 
Physique- USTHB 

32 

Donc  on obtient : 
2

l l

P m g m r

F m a m R

 
   

 

Les forces sont donc proportionnelles à la masse et inversement proportionnelles 
au carré du rayon : 

2

m
F

r

IV-Loi de gravitation universelle: 
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D’après la loi de l’action et la réaction (3ème loi de Newton): 

1F 2F

Terre M 

Lune m 

2

M

r
1F 2

m

r
2FComme:  et 

1 2 1 2F F F F   

Alors :  
2

Mm

r
F

R 

r 

IV-Loi de gravitation universelle: 
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2F 1F

Terre M 

Lune m 

2

Mm
G u

r
 1F

11 2 26.6710 . .G N kg m 

2
'

Mm
G u

r
 2F

u 'u

Newton a introduit une constante de gravitation  

La force appliquée par la terre sur la lune est : 

La force appliquée par la lune sur la terre est : 

IV-Loi de gravitation universelle: 
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- 3ème loi de Kepler (loi des périodes): 

Si l’orbite est circulaire autour du soleil, chaque planète subit la force  

2 2

2 2

4Mm v
F G m mr

r r T


  

2

1
1 12 2

1 1 1

2
22

2 2 2 2
2 2

4

4

Mm
G m r

F r T

MmF
G m r

r T




  

2 3

1 1

2 3

2 2

T r
=

T r

IV-Loi de gravitation universelle: 

On faisant le rapport des forces 
appliquées à chaque planète on a:  
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- Satellite géostationnaire : 
Corps au niveau du sol:  

1
1 02

Mm
G m g

R
 1F

Satellite à une hauteur h du niveau du sol:  

2
22

Mm
G m g

r
 2F

En faisant le rapport des deux forces : 

2

2
2

1 1 0
2

Mm
G

m gr
Mm m g

G
R

 2

1

F

F


2 2

0 02 2

R R
g(h)= g = g

r (R+h)

Terre 
(M) 

corps (m1) 
R 

Satellite 
    (m2) 

r 

IV-Loi de gravitation universelle: 



Chafa Azzedine- Faculté de Physique- 
USTHB 

37 

V- Les Forces de contact  

C’est la force exercée entre deux corps qui sont en contact l’un avec l’autre. Nous 
allons étudier ces forces à travers certains exemples. 

Exemple 1: un objet de masse m au repos sur un plan horizontal  

P

C

A l’équilibre : 

P+C=0 C=-P

C : Représente la somme de toutes les petites forces de contact entre le corps 
et le sol (réaction du sol) 
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Exemple 2: Démarrage d’une course sur un plan horizontal  

P+C=ma C=ma-P

En mouvement on écrit : a

P
ma

-PC

C

2 2C= (ma) +P

Module de C: 

Remarque: P est constant C dépend de ma 

V- Les Forces de contact  
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Exemple 3: Démarrage d’une voiture ou moto sur un plan horizontal 

a En mouvement on écrit : 

1 2 1 2P+C +C =ma C=C +C =ma-P
1C

P

2C

P
1C

ma

2C

C

C (ou C2) est appelée force motrice 

V- Les Forces de contact  
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Exemple 4: Voiture dans un virage avec une  vitesse constante: 

P+C=ma C=ma-P

Relation fondamentale de la dynamique 

nma

C -P
na

C

P

2

0

/

T

N

a
v cte

a v R


  



V- Les Forces de contact  
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VI- Forces de frottements: 

On étudie ces forces à travers certains exemples: 

Exemple 1: corps de masse m sur un plan horizontal au repos: 

On tire un corps de masse m, au repos, avec une force    sans le déplacer F

P

F

P + F + C = 0 C = -F - P

-F

-P
CC

La relation fondamentale de la dynamique s’écrit: 
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On définit le coefficient de frottement statique par: 

s
x

y

C
=

C

0
 



x

y

ox : F - C

oy : C - P = 0


 



x

y

C F

C = P
s

F
=

P

s
0

F F = PDonc il faut une force                           pour qu’il y ait mouvement.   

P

F

x
C

yC
C

Exemple 1: corps de masse m sur un plan horizontal au repos: 

On décompose donc, la force de contact sur ox et oy: 

VI- Forces de frottements: 
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Matériaux 

Acier/Acier 

(surface sèche) 0,6 

Acier/Acier  

(surface graisseuse) 0,1 

Pneu de caoutchouc  

(route sèche) 0,9 

s
Exemples de coefficient de frottement statique 

Exemple 1: corps de masse m sur un plan horizontal au repos: 

VI- Forces de frottements: 
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Exemple 2: corps de masse m sur un plan horizontal en mouvement : 

Soit un corps en mouvement sur lequel on applique une force  F

P

F

P + F + C = ma C = ma - P - F

a
-F

ma

-PC

C

La relation fondamentale de la dynamique s’écrit: 

VI- Forces de frottements: 
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On définit le coefficient de frottement dynamique (ou de glissements) par: 

x
d

y

C

C
 

  
  

  

x x

y y

ox : F - C = ma C = F - ma

oy : C - P = 0 C = P g 
F - ma

P

P

F

a
C

x
C

yC

Exemple 2: corps de masse m sur un plan horizontal en mouvement : 

On décompose donc la force de contact sur ox et oy 

VI- Forces de frottements: 
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Matériaux 

Acier/Acier 

(surface sèche) 0,4 

Acier/Acier  

(surface graisseuse) 0,05 

Pneu de caoutchouc  

(route sèche) 0,8 

d
Exemples de coefficient de frottement dynamique 

Exemple 2: corps de masse m sur un plan horizontal en mouvement : 

VI- Forces de frottements: 
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Si le mouvement est uniforme , la vitesse est constante donc   

x
g

y

C

C
  

F

P
P + F + C = 0 C = -P - F

a = 0

P

F
C

yC

x
C

Exemple 2: corps de masse m sur un plan horizontal en mouvement : 

VI- Forces de frottements: 



v

x
0α
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Exemple 3: corps de masse m sur un plan incliné au repos: 

P

On lève le plan incliné sans que le corps ne bouge jusqu’à un angle limite  0

P + C = 0 C = -P
C

La relation fondamentale de la dynamique: 

VI- Forces de frottements: 
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On définit le coefficient de frottement statique par: 

s
x

y

C
=

C

0
 



x x

y y

ox : P - C

oy : C - P = 0


 



x x

y y

P = C

C = P

0s tg  
0

0

sin

cos
s

mg

mg





  x

y

P

P

v

P

x

y

C

x
C

P
x

Py

0α

yC0α

0α

Exemple 3: corps de masse m sur un plan incliné au repos: 

On décompose les forces sur ox et oy: 

VI- Forces de frottements: 
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Remarques: 

-On refait l’expérience avec le même corps ayant des masses   différentes : 

-On refait l’expérience avec des corps de nature différentes : 

on constate que s ne dépend pas de la masse 

on constate que s dépend de la nature des corps en contact. 

0α 0α0α

1α 2α
3α

Exemple 3: corps de masse m sur un plan incliné au repos: 

VI- Forces de frottements: 
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Exemple 4: corps de masse m sur un plan incliné en mouvement: 

Si on prend un angle  supérieur à 0 il y mouvement 

α

v

x

y

C

ma

-P

P

C

P + C = ma C = ma - P

VI- Forces de frottements: 

La relation fondamentale de la dynamique s’écrit: 
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Exemple 4: corps de masse m sur un plan incliné en mouvement: 

α

v

x

x
C

yC


P

C

Py

α

P
x

On définit le coefficient de frottement de glissements par: 

x
d

y

C

C
 

ma
 



x x

y y

ox : P - C

oy : C - P = 0

VI- Forces de frottements: 

On décompose les forces sur ox et oy: 

sin

cos
g

g a

g







 
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Exemple 5: corps de masse m dans un fluide 

v

f = -kv

f = -kv

f F

v

Quand un corps se déplace dans un fluide avec de petites vitesses, il est 
soumis à une force de frottement proportionnelle à la vitesse  

La relation fondamentale de la dynamique donne:   

F + f = ma

VI- Forces de frottements: 
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En projetant dans le sens du mouvement on a : 

F - f = ma

dv
a =

dt

Sachant que : 

On obtient : 

dv
F - kv = m

dt

Exemple 5: corps de masse m dans un fluide 

VI- Forces de frottements: 

F + f = ma

La relation fondamentale de la dynamique donne:   



dv
m + kv = F

dt

Cette relation s’écrit sous la forme : 

 

Résolution de cette équation, la solution s’écrit comme: 

. .( ) ( )s s mt v t
p

v(t) = v

Avec          est la solution particulière telle que v est constante donc       ( )t
p

v 0
dv

dt

p p

F
kv = F v (t) =

k

Exemple 5: corps de masse m dans un fluide 

VI- Forces de frottements: 
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et             est la solution sans second membre qui correspond à     ( )t
S.S.m

v F = 0

dv
m + kv = 0

dt

Exemple 5: corps de masse m dans un fluide 

VI- Forces de frottements: 

En faisant une séparation des variables on a:  


dv dv k

m = -kv = - dt
dt v m

On intègre de chaque côté et on obtient: 

 
dv k

= - dt
v m
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Exemple 5: corps de masse m dans un fluide 

VI- Forces de frottements: 

 
dv k

= - dt
v m

Le résultat de l’intégrale donne  

ln ( )v t t cte
k

= -
m

( ) )v t t Cte
k

= exp(-
m

On passe aux exponentiels donc: 

( ) )ssmv t t
k

= Aexp(-
m

:

exp( ) exp( )exp( )

Rappel

A B A B 

:

exp(ln )

Rappel

x x
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( )
tk

v t Ae
m



 
k

m

En prenant comme conditions aux limites t = 0 s   , v(0) =0 m/s, la constante est: 

k
A

m
  

La vitesse en fonction du temps s’écrit comme: 

Exemple 5: corps de masse m dans un fluide 

VI- Forces de frottements: 

. .( ) ( )s s mt v t
p

v(t) = v

En remplaçant les solutions par leurs expressions on a: 

( )
tk k

v t e
m m



 
k

m
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Finalement la vitesse s’écrit : 

( ) (1 )
t tk k k

v t e e
m m m

 

   
k k

m m

Que l’on peut écrire sous la forme : 

( ) (1 )
t

lv t v e 


 

Avec:  

 
k

m

l

k
v

m


et  

lv

( / )v m s

( )t s

5

Exemple 5: corps de masse m dans un fluide 

VI- Forces de frottements: 

:vitesse limite 

:constante de temps 
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VII- Forces élastiques: 

1-Mouvement rectiligne sinusoïdal  

Dans ce type de mouvement sinusoïdal l’abscisse x du point M s’écrit:  

o 
i

M 
x 

( ) sin( )x t A t  

Amplitude 

pulsation 

Phase à l’origine 

2
T est la période





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( ) sin( )x t A t  

Position de la masse  m est :  

Vitesse  est la dérivée de la position : 

( ) cos( )
dx

v t A t
dt

    

Accélération  est la dérivée de la vitesse: 

2
2

2
( ) sin( )

dv d x
a t A t

dt dt
      

VII- Forces élastiques: 

1-Mouvement rectiligne sinusoïdal  

o 
i

M 
x 
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On constate que l’équation de l’accélération devient:  

2( ) sin( )a t A t    

2( ) ( )a t x t 

Ou encore : 
2

2

2
0

d x
x

dt
 

 

x(t) 

VII- Forces élastiques: 

1-Mouvement rectiligne sinusoïdal  

o 
i

M 
x 
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F

F

A- Interprétation dynamique: 

Si m est la masse du corps animé du mouvement 
rectiligne sinusoïdal il est soumis à une force: 

2F ma m xi  

Cette force est opposée au déplacement x, elle  
tend à ramener le corps au point O: 
             On l’appelle force de rappel  

2F ma m xi kxi    

VII- Forces élastiques: 

1- Mouvement rectiligne sinusoïdal  
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2- Mouvement d’un corps suspendu à un ressort 

O 

P

0x

F

0

k 

Ressort à vide 

Equilibre 

A  l’équilibre on a : 

0P P F   F

0 0

mg
kx mg x

k
   

x 

VII- Forces élastiques: 

Le ressort s’allonge donc de: 
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F

P

x

O 

P

0x

F

0

k 

Ressort à vide 

Equilibre 
x 

2- Mouvement d’un corps suspendu à un ressort 

VII- Forces élastiques: 

A partir de la position d’équilibre, on tire le corps d’une 
distance x 
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On lâche le corps à par de cette position, il se met en mouvement donc: 

P ma P F ma    F

0( )mg k x x ma  

kx ma 

2
2

2

d x k
a x x

dt m
     

C’est donc un 
mouvement 
sinusoïdal 

2- Mouvement d’un corps suspendu à un ressort 

VII- Forces élastiques: 

On remplace la force F par son expression : 

En utilisant la condition de l’équilibre obtenu auparavant: 

0kx mg
On obtient alors: 

Et enfin:: 
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VIII- Moment cinétique  

VIII-1-Moment cinétique d’une particule 

Soit une particule de masse m animée d’une vitesse v en mouvement curviligne  
par rapport à un point O.  

v

L

r

v L = r p = mr

Le moment cinétique de m par rapport à O est: 

Le module de L est: 

sinv L = r p sin(r, p) = mr
 L r et L p
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Remarque: 

On rappelle que le moment d’un vecteur     par rapport à un point O est:    V

A 

O 

V 
v/o

= OA V
r 

En regardant la définition du moment cinétique, 

 L = OM p = r p

 p/oL = r p =

LOn peut dire que    est le moment de    par rapport à O p

VIII- Moment cinétique  
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VIII-2-Théorème du moment cinétique : 
v

L

r

Il s’agit de trouver la dérivée du moment cinétique 

L = r p




dL d(r p)
=

dt dt

  
dL dr dp

= p + r
dt dt dt

VIII- Moment cinétique  

( ) ' ' '

Rappel

AB A B AB 

En utilisant la loi de dérivation d’un produit: 
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dp

et r r
dt

VIII-2-Théorème du moment cinétique : 

VIII- Moment cinétique  

v

L

r

  
dL dr dp

= p + r
dt dt dt

Par définition on sait que: 

et F 
dp

dt
v

dr
=

dt

Par définition du produit vectoriel on a: 

 
dr

p = v p = 0 (car v // p)
dt
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
F/o

dL
=

dt

Que l’on peut écrire sous la forme 

F   
dL dp

= r r
dt dt

Théorème :  
 La dérivée du moment cinétique d’une particule, par rapport au temps 
est égale au moment de la force qui lui est appliquée au même point. 

VIII-2-Théorème du moment cinétique : 

VIII- Moment cinétique  

On obtient finalement : 
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VIII-3-Analogie avec la deuxième loi de Newton : 

Rectiligne  Rotation 

 
 

 
 
 

p/o

F/o

d
=

dt

p/o
L

dp
F =

dt

Le théorème du moment cinétique est donc une traduction de la deuxième loi 
de Newton en terme de moments 

VIII- Moment cinétique  
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IX- Forces centrales : 

Une force centrale est celle dont la direction passe toujours par un point fixe O 
(centre de force). 

IX-1-Définition d’une force centrale : 

O 

F

r

Dans tout ces cas on a: 

 r//F r F = 0

 
dL

= 0 L = constante
dt

Sous l’action d’une force centrale, la moment cinétique par rapport au centre 
de force est constant 
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 Exemple :  

- Rotation de la terre autour du soleil 
- Rotation de satellite autour de la terre  

Si on étudie le mouvement en coordonnées polaires:  

IX- Forces centrales : 

 
dL

= 0 L = constante
dt

IX-2- Invariant du moment cinétique :  
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IX- Forces centrales : 

v
r

v = v

En coordonnées polaires, la vitesse s’écrit:  

On sait que les composantes s’écrivent : 

dr d
et v r

dt dt



 rv

 L = constante m r v = Cte

Pour une force centrale on a donc : 
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IX- Forces centrales : 

 L = constante m r v = Cte

En remplaçant la vitesse par ses composantes on a : 

)v  
r

L = m r v = m r (v

v   
r

L = m r v = m r v m r

Sachant que : 

v v     r v m r m r

0  
r

r // v m r v
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IX- Forces centrales : 

Finalement on obtient : 

L v v Cte    m r m r
Ou encore : 

( )
d

L r Cte
dt


 m r

Comme la masse m est constante l’invariant s’écrit donc: 

2 d
r Cte

dt




On encore sous la forme: 

2r Cte 
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IX-3- 2ème loi de Kepler (loi des aires): 

IX- Forces centrales : 

Comme dr est petit l’aire décrite par la 
planète pendant un temps dt s’écrit :  

1

2
dA r dr 

En introduisant la vitesse on a : 

1

2
dA r v dt 

Que l’on peut écrire : 

1

2

L
dA dt

m

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IX-3- 2ème loi de Kepler (loi des aires): 

IX- Forces centrales : 

1

2

L
dA dt

m


Comme la force est centrale donc le moment cinétique est constant: 

1

2

dA L

dt m
 tedA

C
dt

 

En intégrant, on obtient :  

tedA C dt 
En intégrant, on obtient :  

( ) .teA t C t


