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I- Introduction: 

Dans les chapitres précédents nous avons étudiez deux invariants: 

- Quantité de mouvement constante pour un système isolé 

- Moment cinétique constant pour une force centrale 

Nous allons maintenant définir un autre invariant qui est l’énergie. 

Cette grandeur se présente sous différentes formes et peut se transformer 





II-1-Travail d’une force :  
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Soit une particule se déplaçant sur une trajectoire sous l’effet d’une force  F


Pendant un temps dt, elle passe de M à M’. L’élément de travail dW effectué par 
cette force est: 
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Il y a plusieurs façons d’écrire ce travail: 

II – Notion de travail: 

A- Si on connait l’angle entre F et dl  

dlFdlFldFdW t cos




II-1-Travail d’une force :  

II – Notion de travail: 

Si on effectue ce travail entre deux points A et B: 
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Exemple : 

Calculer le travail nécessaire pour faire déplacer une masse du point A (x=0m) au 
point  B (x= 10 m) sous l’effet de la force :  
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Corrigé : 
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II-1-Travail d’une force :  

II – Notion de travail: 

Le travail entre A et B est: 
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B- Si on connait les composantes de la force: 
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II-1-Travail d’une force :  

II – Notion de travail: 



II-1-Travail d’une force :  

II – Notion de travail: 

Calculer le travail nécessaire pour faire déplacer une masse du point A (1,-1,0) au 
point  B (5,4,4) sous l’effet de la force dans l’espace :  

(5 1) (3 2) 6F x i y j k    

Exemple : 

Corrigé : 
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Le travail pour aller du point A (1,-1,0) au point  B (5,4,4) s’écrit: 

Dans notre cas il s’écrit: 
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II-1-Travail d’une force :  

II – Notion de travail: 
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En effectuant ces intégrales on a: 
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C-Si on dispose de la courbe de F(r) on a:  
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II-1-Travail d’une force :  

II – Notion de travail: 



II-1-Travail d’une force :  

II – Notion de travail: 

Calculer le travail nécessaire pour faire déplacer une masse du point A (x=-10 m) 
au point B (x=10m)  s’il soumis à la force dont le graphe est: 

Corrigé : 

Le travail pour aller du point A au point  B s’écrit: 

Exemple : 
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II-2-Travail d’une force constante 
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Le travail de la force     constante  pour aller de A à B est: F
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On constate que ce travail ne dépend que des positions initiale et finale.  
Il ne dépend onc pas du chemin suivi 
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II – Notion de travail: 
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III – Energie Cinétique 

dlFdlFldFdW t cos


Nous avons précédemment que le travail d’une force s’écrit 

De plus la force tangentielle s’écrit: 
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Donc: 
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En intégrant entre deux points  A et B on a: 
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et quelque soit la force  on a : 
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III – Energie Cinétique 
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Si cette masse passe d’un point A à B sous l’effet de cette force, son travail est :  



IV – Energie potentielle: 

IV-1 – Energie potentielle gravitationnelle: 

Soit un corps soumis uniquement à la force de gravitation universelle.  
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Cette force s’écrit sous la forme:  
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Si cette masse passe d’un point A à B sous l’effet de cette 
force, son travail est :  
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IV – Energie potentielle: 

IV-1 – Energie potentielle gravitationnelle: 
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D’autres part nous avons vu dans le chapitre précédent que : 

CACBC EEEW 

Donc: 
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On réécrit cette expression sous la forme: 
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IV – Energie potentielle: 

IV-1 – Energie potentielle gravitationnelle: 



Comme les points A et B sont aléatoires donc la quantité 

r

GMm
EC 

est constante au cours du mouvement. 

Et on constate donc que la grandeur                  varie inversement avec 
 l’énergie cinétique. r

GMm

IV – Energie potentielle: 

IV-1 – Energie potentielle gravitationnelle: 

Quand l’une augmente l’autre diminue.  



Cte
r

GMm
Ep 

On définit ainsi l’énergie potentielle de la masse dans le champ de gravitation 
comme: 

Cette grandeur est connue à une constante prés. Pour supprimer la constante 
on choisit une référence.   

Dans le cas de l’énergie potentielle de gravitation on choisit comme 
référence : 

( ) 0pE  

IV – Energie potentielle: 

IV-1 – Energie potentielle gravitationnelle: 
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La relation entre l’énergie cinétique et potentielle s ’écrit: 

pBpACACBPACApBCB EEEEEEEE 

pC EE 

La grandeur constante vue plus haut est appelée énergie mécanique totale: 

pCT EEE 

IV – Energie potentielle: 

IV-1 – Energie potentielle gravitationnelle: 



IV-2 – Energie potentielle du poids: 
gmP 
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Soit un corps soumis uniquement à son poids passe du 
point A au point B 
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D’autres part nous avons vu que : 

CACBC EEEW 

IV – Energie potentielle: 

Le travail effectué entre ces deux points A et B s’écrit: 

.

B

A

W mg dl 
B

A

z

z

W mg dz   ( )A BW mg z z 



Donc: 

BACACB mgzmgzEEW 

On réécrit cette expression sous la forme: 

ACABCB mgzEmgzE 

Comme les points A et B sont aléatoires donc la quantité 

mgzEC 

est constante au cours du mouvement. 

IV-2 – Energie potentielle du poids: 

IV – Energie potentielle: 



Et on constate donc que la grandeur            varie inversement avec 
 l’énergie cinétique. 

mgz
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On définit l’énergie potentielle de la masse soumise à son poids  par: 

Dans le cas de l’énergie potentielle du poids , on choisit comme référence : 

(0) 0pE 

IV – Energie potentielle: 

IV-2 – Energie potentielle du poids: 

Donc quand l’une augmente l’autre diminue.  

( )pE z mgz 



IV-3 – Energie potentielle élastique: 
ikxF 



Soit un corps soumis à une force élastique, son travail entre deux points 
A et B est: 
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IV – Energie potentielle: 
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D’autres part nous avons vu que : 

CACBC EEEW 

Donc: 
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On réécrit cette expression sous la forme: 
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IV-3 – Energie potentielle élastique: 
ikxF 



IV – Energie potentielle: 



Comme les points A et B sont aléatoires donc la quantité 

2

2

1
kxEC 

est constante au cours du mouvement. 

Et on constate donc que la grandeur                  varie inversement avec 
 l’énergie cinétique.  
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IV-3 – Energie potentielle élastique: 
ikxF 



IV – Energie potentielle: 

Quand l’une augmente l’autre diminue.  



CtekxEp  2
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On définit ainsi l’énergie potentielle de la masse soumise à son poids : 

Dans le cas de l’énergie potentielle élastique on choisit comme référence : 

(0) 0pE 

IV-3 – Energie potentielle élastique: 
ikxF 



IV – Energie potentielle: 
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IV-4 – Représentation graphique des différentes énergies: 

Exemple 1: 

On lance un corps de masse m vers le haut avec une vitesse initiale v0 

0v


On prend comme référence de l’énergie potentielle Ep(0)=0 

Comme l’énergie totale est constante on la calcule en n’importe quel 
point. Dans notre cas c’est au point z=0. 
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mgzzEp )(

On trace les graphes des énergies en fonction de z : 

Qui  est une droite de pente (mg) 

Qui est une droite de pente (-mg) 

mgzEzE TC )(

IV -4– Représentation graphique des différentes énergies: 
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On ne garde que les parties des courbes pour lesquelles l’énergie cinétique 
est positive ou nulle 
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IV -4– Représentation graphique des différentes énergies: 



Exemple 2: 

On place un ressort de constante de raideur k sur un plan horizontal. On lui 
attache une masse à une extrémité. On comprime d’une distance x=A et on 
lâche sans vitesse initiale. 

Tracer sur le même graphe, les courbes des énergies Ec(x), Ep(x) et ET(x). 

L’énergie totale étant constante on la calcule en n’importe quel point.  
Dans ce cas c’est au point x =A. 
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IV-4 – Représentation graphique des différentes énergies: 

( ) 0cE A 
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On trace les graphes des énergies en fonction de x : 
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Qui est une parabole en fonction de x 
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Qui est une hyperbole en fonction de x 

IV-4 – Représentation graphique des différentes énergies: 
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On ne garde que les parties des courbes pour lesquelles l’énergie cinétique 
est positive ou nulle 
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IV -4– Représentation graphique des différentes énergies: 

AA



Soit un corps de masse m, soumis à la force de gravitation universelle. On le 
lâche sans vitesse initiale à partir de la hauteur correspondant à un rayon r0 
par rapport au centre de la terre.  

Tracer sur le même graphe, les courbes des énergies Ec(r), Ep(r) et ET(r). 

L’énergie totale étant constante on la calcule en n’importe quel point. Dans ce 
cas c’est au point r =r0. 
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Exemple 2: 

IV-4 – Représentation graphique des différentes énergies: 
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On trace les graphes des énergies en fonction de r : 

r

GMm
rEp )(

Qui est une  fonction en (-1/r) 
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Qui est une fonction en (1/r) 

IV-4 – Représentation graphique des différentes énergies: 
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De plus on est limiter par la sol donc r>RT (rayon de la terre) 

On ne garde que les parties des courbes pour lesquelles l’énergie cinétique 
est positive ou nulle 

IV-4 – Représentation graphique des différentes énergies: 



V – Forces qui dérivent d’un potentiel ou conservatives: 

V –1- Définition 

Une force dérive d’un potentiel si le travail de cette force pour un déplacement 
entre deux points quelconques A et B est égal à la différence des énergies 
potentielles des deux points initial et final.  
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Toutes les forces que nous avons vu, poids, force gravitationnelle et élastique 
sont des forces qui dérivent d’un potentiel. 

Remarque: 

Le travail d’une force qui dérive d’un potentiel est nul sur une trajectoire 
fermée 



V –2- Relations entre la force et l’énergie potentielle:  

* Si le force F dérive d’un potentiel on a: 
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V – Forces qui dérivent d’un potentiel ou conservatives: 



* En utilisant des définitions mathématiques : 
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- La différentielle d’une fonction f est : 
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- Le gradient d’une fonction f est : 
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Dans notre cas la différentielle de Ep est donnée par : 

V – Forces qui dérivent d’un potentiel ou conservatives: 



Le produit scalaire de la force par le déplacement est : 

dzFdyFdxFldF zyx 
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V – Forces qui dérivent d’un potentiel ou conservatives: 
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Donc:  



Par identification on obtient : 

x

E
F

p

x





z

E
F

p

z





p
y

E
F

y


 



En remplaçant dans l’expression de la force on a :  

x y zF F i F j F k  

V – Forces qui dérivent d’un potentiel ou conservatives: 

p p pE E E
F i j k

x x x

   
    

   

PF gradE 



Et donc enfin : 

PEdgraF 


Remarque: 

En coordonnées polaires la relation entre la force qui dérive d’un potentiel      
et l’ énergie potentielle s’écrit 

r

E
F

p

r













pE

r
F

1

V – Forces qui dérivent d’un potentiel ou conservatives: 



VI – Discussion d’une courbe d’énergie potentielle: 

Soit un corps de masse m qui se déplace suivant l’axe Ox sous l’effet d’une force 
F qui dérive d’un potentiel. 

Ce mouvement donne naissance à un graphe d’énergie potentielle sous la forme 
suivante: 
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La force à laquelle est soumise la forme dérive d’un potentiel donc: 

PF grad E 

Sur le graphe de l’énergie potentielle en fonction de x, la force correspond à la 
pente de la tangente à la courbe avec un signe moins  

VI – Discussion d’une courbe d’énergie potentielle: 
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Etude des extrémums : 

Les positions d’équilibre correspondent à une force nulle. 

Qui est donc un extremum de la courbe Ep = f(x) 
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VI – Discussion d’une courbe d’énergie potentielle: 

Ce qui correspond sur le graphe de l’énergie potentielle à une tangente 
horizontale.  
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Les points x1, x2 et  x3 sont donc des positions d’équilibre  

Les points x1 et  x3 sont donc des positions d’équilibre stables  

Le point  x2 est une position d’équilibre instable  
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VI – Discussion d’une courbe d’énergie potentielle: 



Nous allons donc montrer que suivant les conditions initiales et donc de l’énergie 
totale de la masse le mouvement est complètement différent.  

1er Cas : ET =ET1 

)(JEP

)(mx

1TE

4x 5x

Pour les points x4 et x5  on a ET =EP donc EC = 0  

Le mouvement ne peut avoir lieu que si EC > 0 ou nul 

La masse va donc osciller entre les deux points extrêmes x4 et x5  

CE

VI – Discussion d’une courbe d’énergie potentielle: 



2em Cas : ET =ET20 
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7x6x 9x
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Pour les points x6 , x7 , x8 et x9  : on a ET =EP donc EC = 0  

Le mouvement ne peut avoir lieu que si EC > 0 ou nul 

PCT EEE 

On donc trace le graphe de l’énergie cinétique (symétrique de EP par rapport à ET/2. 

CE

CE

Le corps va donc osciller soit entre x6 et x7 ou entre x8 et x9   
Le corps ne peut pas passer de x7 à x8 (il y a une barrière de potentiel) 

VI – Discussion d’une courbe d’énergie potentielle: 



3em Cas : ET =ET3 

)(JEP
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Pour les points x10 et x11  on a ET =EP donc EC = 0  

Le mouvement ne peut avoir lieu que si EC > 0 ou nul 
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Le corps va donc osciller soit entre x10 et x11 

VI – Discussion d’une courbe d’énergie potentielle: 



4em Cas : ET =ET4 
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On a ET =EP donc EC = 0 uniquement pour le point  x12  

Le mouvement ne peut avoir lieu que si EC > 0 ou nul 

Si le corps va vers les x positifs : il part directement jusqu’à l’infini 

CE

Si le corps va vers les x négatifs: il va jusqu’à x12, rebrousse chemin et va vers l’infini 



VI – Force non conservatives : 

Définition: 

Ce sont toutes les forces qui ne dérivent pas d’un potentiel donc pour lesquels: 

iEdgraF P




ldFdEP


.

 

B

A

PBPA EEldFW


.

Nous allons les étudier en utilisant des exemples. 



Exemple 1: 

Soit une particule de masse m qui tombe dans un fluide sous l’action de son poids 

f


P


fPC WWWE   
Le poids dérive d’un potentiel donc 

. PP
W P dl E  

Donc: 
C P f

E W W  

T C PE E E   

VI – Force non conservatives : 

C P f
E E W   

T f
E W 

Enfin: 



Exemple 2: 

Un corps qui descend sur un plan incliné soumis à son poids et la force de 
frottement. 

amCP




α

P

C

C P C
E W W W   

0
yy CP

WW 

(Forces perpendiculaires au déplacement) 

VI – Force non conservatives : 

x y x y
C P P C C

E W W W W    

La variation de l’énergie cinétique est égale à la somme des 
travaux de toutes les forces 



La composante du poids suivant ox dérive d’un potentiel donc: 

PP
EW

x



x x
C P C

E W W  

Donc: 

Enfin: 

xCPCT WEEE 

L’énergie totale n’est pas conservée donc Cx ne dérive pas d’un potentiel.   

α

P

C

Exemple 2: 

VI – Force non conservatives : 

En remplaçant on obtient : 

x
C P C

E E W   



Exemple 3: 

Soit un corps de masse m qui se trouve sur une orbite de rayon r1 autour de la terre 
et qui passe à une orbite de rayon r2 

m 

r1 

M 

r2 

Nous avons montré que l’énergie potentiel 
gravitationnelle s’écrit: 

r

GMm
rEp )(

1

11111
r

GMm
EEEErrayonAu CpCT 

On va montré que l’énergie totale n’est pas 
constante donc il ya une force non conservative 

VI – Force non conservatives : 



En terme de force on a: 

r

v
m

r

GMm
rF

2

2
)( 

En simplifiant par le rayon r on obtient: 

2mv
r

GMm


r

GMm
mvEC

2

1

2

1 2 

VI – Force non conservatives : 

Donc l’énergie cinétique s’écrit sous la forme: 



r

GMm
EEEE CpCT 

En écrivant l’expression de l’énergie totale en fonction de r on a:  

21

2
T

GMm
E mv

r
 

VI – Force non conservatives : 

En remplaçant l’énergie cinétique par l’expression obtenue on a:  

2
T

GMm GMm
E

r r
 

1

2
T

GMm
E

r
 



En calculant la variation d’énergie totale entre les deux points r1 et r2 : 

2 1T T TE E E  

La variation d’énergie totale est égale au travail des forces de poussée qui ne 
sont pas conservatives. 

fT WE 

VI – Force non conservatives : 

1 2

1 1

2
T

GMm
E

r r

 
   

 

0TE 

0TE

0TE

De plus : 
Si on augmente l’orbite (r1   r2) alors :   

Si on diminue l’orbite (r1   r2) alors :   


