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1- FORCE ELECTRIQUE (N)

Charles Coulomb {7=-1306

R Sy Y i P S

=9 10° MKSA

=]

La force F1appliquée par qysur g, : 7 = k224, . .
' |F1| = |F2|
La force F2 appliquée par q, sur q;: F, = k——+



1- FORCE ELECTRIQUE (N)




2- ANALOGIE

Force Electricité (Coulomb)

=l

\/

Qq

Mm _, , . .
Force ¢electrique: F=K—7 1

Force gravitationnelle: F=—G 7 U
Q .
= K?"_z u

< | T

Champ gravitationnel: j- F_ —GE;,_ 7 Champ électrique: E =
m






3- ENERGIE POTENTTIELLE ELECTRIQUE (J)

L'énergie potentielle électrique est le travail nécessaire a la force
électrique pour ramener une charge ponctuelle (g)de l'infini jusqu'a une
distance r d'une autre charge Q.

= - Qq
W=J-F. .t=f k2 5.d - 2k E, Alors: E(r)=K—— avec: E,()=0

4- POTENTIEL ELECTRIQUE (V)

De méme que pour la force, il y a une relation entre le potentiel et
I'énergie potentielle

E,(r)

Vir) = I{g
T



5- RESUME




6- PRINCIPE DE SUPERPOSITION

On considere un ensemble de N charges ponctuelles, on cherche le
champ crée par toutes ces charges en un point M de I'espacw_e.

- — - - —
EJH=E1+E:+"'+EJI.;= Ei
Le potentiel crée au point M s'écrit: =
Vg =M +1h++Vy =2 I

—
S E
g i=1

Si on met une charge Q au point M, la force
créée est:

4

M

N
= = = = —
EH=F1+F2+"'+E'-.-'=Z i = QEy

i=1

Et I'énergie potentielle en ce point est:
> ;

y E‘p;‘-':l'zE‘p1+E'p2+“'+E'p4"."=ZE'piZQH'-'T
i=1




EXERCICE D'APPLICATION

Soient deux charges ponctuelles q=5uC et q,= -2uC , placées au
sommet d'un triangle rectangle isocele de coté a = 0.1 m(voir figure).

1- Calculer et représenter le champ électrique crée par ces charges
sur l'autre sommet

2- Déterminer le potentiel en ce point

3- On place en ce point une troisieme charge q;=5uC , déduire la force
et I'énergie potentielle en ce point.




1- Calcul du champ électrique:

—+ —+ —+
. 'EIM' — El + 'EIE
EIJH

Ey £ | = a 2}2—22.5105 V/m (2.5 cm)

|E2| = H‘— =1810°V/m (2cm)

Echelle:1cm — 910° V/m

X

_:|.
EM =

E, = Eycos45 — E, = 2.09 10° V/m
= Eyy = 16.04 105 V/m

E, = Ey5ind5 =159 105 V/m



2- Calcul du potentiel :

Vi =1 + 15

K
Vi = K=+ KL == +q))

a2 a a2

Vy = 13.8210% 7V

3- a- Calcul de la force électrique : 2
1 E,
-+ — =M
Fy = QEyn
(M a g
% ( - {4 -—-
Fy =8.02N T P
3- b- Calcul de I'énergie potentielle : 7
‘,-’{-.'Ea
EpM = QVy #,*'
EFM = (.69 JF 7 I:"_‘_:



'7- CAS DE DISTRIBUTION CONTINUES

x dE":Rd—g* av = k1
r T
i
dq = Adl F - fﬁ%ﬁ et V = J-Ki—q

dq
dq: aas ﬂ-f(—u et V= J-J-f(—
r

C- densité volumique :

ag=pav £ [[[x%ae v [[[x%



8- RELATIONS ENTRE LE CHAMPS E ETLE POTENTIEL V

Nous partons des relations connues en mécanique entre la force et I'énergie
potentielle

— —F dl et F = —gradE,

Et sachant que :

F}=QE et Ep=QV

On remplace dans les deux premiére expressions et on simplifie par Q on a:

—



9- LIGNES DE CHAMPS ET EQUIPOTENTIELLES

A- LIGNES DE CHAMPS

Les lignes de champs électrique sont des surfaces sur lesquelles le champ E
est tangent

B- EQUIPOTENTIELLES

Ce sont des surfaces sur lesquelles le potentiel V est constant '~



PROPRIETES :

“+Les lignes de champs sont perpendiculaires aux équipotentielles

» Les lignes de champs vont du potentiel le plus grand au plus pefit

Ligmes de champ

Exquipatentielle



EXEMPLE DE LIGNES DE CHAMPS ET EQUIPOTENTIELLES
POUR DES DISTRIBUTIONS DE CHARGES

Charge ponctuelle positive

i

-

Champ électrique constant horizontal



10- EXEMPLES DE CALCUL DE CHAMPS ET DE
POTENTIEL DE CHARGES CONTINUES

N On décompose suivant ox et oy on obtient:
A A i dE, =dEcosa
: o1 X d Ex = -
S A Nl e N 1= CH dE, =—dEsina
! d Ey E y

On exprime tout en fonction de l'angle o :

X y X
et tga=—= y=xtga = dy =
r cosa J X y J y cos’ a

da




a- Fils chargé uniformément de densité A (C/m)

On obtient alors en remplagant

r

dE, =dEcosa = K;lzdy cosa = %cosa

Ady .

KA .
—sing=—-—sina

dEy =—dEsina =— K
X

L r

En intégrant entre o, et a, ona:

X

E = K—)”(sin a,—sina,)
X

KA
E, = 7(005052 —cosa,)



a- Fils chargé uniformément de densité A (C/m)

In x + Cte




b-Disque de rayon R, chargé uniformément de densité c (C/m?)

Le champ crée par un élément dS au point M s'écrit:

— Kdqg KodS

dE = - u= - u

En prenant une élément symétrique a dS on obtient un autre
champ, ce qui donne une composante globale suivant I'axe oy

On introduit un élément de surface dS sous forme d'une
couronne

Cette couronne de rayon x et largeur dx s'écrit:

X
Tt dS = 2z x dx

L'élément de champ dE créé par cette couronne s'écrit:

Ko 27z xdx
—_ r2

dE



b-Disque de rayon R, chargé uniformément de densité o (C/m?)

En décomposant les champs suivant ox et oy on constate que :

dE, =dEsina dE, =dEcosa
= Y _ : ry s
IE NAE, De plus, par raison de symetrie, la composante du
- gl"" champ total suivant ox est nulle
dE. €
Ca Donc le champ total est suivant oy et s'écrit:

E=[[ e,




b-Disque de rayon R, chargé uniformément de densité c (C/m?)

Ecrivant la composante du champ suivant oy

dE, =dEcosa = KGZTXdX Cos o
r

Exprimons cette composante en fonction d'une seule variable x qui varie
entre O et R

r=(y*+x°)" ; cosar ="

Elle prend la forme:




b-Disque de rayon R, chargé uniformément de densité c (C/m?)

Le champ total suivant oy s'écrit donc:

E= J'ORdEy = Z;j: J'OR(yZ _:_((;I()E)WZ

Pour faire cette intégrale on fait le changement de variable suivant:

X=0 —>U=y’

U=y’ +x° = dU=2xdx avec les bornes :
x=R >U=y"+R’

L'intégrale devient plus simple et s'écrit:

E

oy v*+r%  dU oy 172 (¥?+R?)
= E - —U
26‘0 y2 U 3/2 280[ :|y2



b-Disque de rayon R, chargé uniformément de densité o (C/m?)

Le résultat s'écrit sous la forme:

c_oy| 1 1 E=G[l_ zy 2]
25| Jy (Y +R) SIS

On obtient alors deux champs : 4 E(V/m)

(o)

2¢,
Poury>0ona: |y=y

y(m)
E = c 1_ y >
28, (y*+R?)
Poury<QOona: ly=-y _c
2¢




A- Méthode directe:

Kdg KodS
rr

dVv =

On prend la méme surface que pour le champ et exprime en fonction de x ety

1/2
— r=_y” +x’ et K=
dS = 2z xdx (v +x7) i,

Ce qui donne:

lod xdx

dVv =
280 (y2+X2)l/2




En intégrant on obtient:

o R xdx
v =[dv = n ) )"

En faisant le méme changement de variable que pour E on a:

Xx=0 U=y’
U=y"+x* = dU =2xdx avec les bornes : y
x=R —>U=y"+R’

_oy 2+R?)  dU Donc V=2i[ /(yz"'Rz)—M]

V =
280 y2 2U 1/2 80



On a donc deux potentiels :

4 V(V)
R
P . - 280 -'II II'.
oury>0ona: |y=y 71\
4 L !
-l..l" 1““-—_\.

V= Z%N(yz +R) -]

Poury<QOona: ly=-y

V = %I:\/(y2 +R?) + y:l

0



B- Méthode a partir du champ électrique:

On prend uniquement le cas ouy est positif :

dV =—E.dl =—Edy

o

B 3 oy —_ % | [y ydy
V = IEdy 2 |:1 W]dy Vv 230 |:.[ y jm]

En faisant le méme changement de variables on obtient:

g «/(yz +R*) -y |+cte
2€

0

V =

La constante s'annule en posant comme référence V(«)=0



REMARQUE:

Si le rayon est trés grand (R tend vers l'infini), le disque devient un plan infini

Le champ devient: E= % Il est indépendant de y

0

Le potentiel quand a lui devient:

g dy=—ay+cte

2¢g, 2¢g,

dV =—E di =—Edy V=



11- Energie interne d'un systéme de N charges ponctuelles

A- Energie potentielle

Soit une charge q soumise a une force électrostatique On la déplace

de l'infini a un point M de potentiel V, F=qE

M

qE.dT=—quV E =qV

W=[|Fd =
pM M

o0

8%—-.{
8'—.§

B- Energie interne d'un systéme de deux charges

Soit une charge q; qui a un potentiel V; en un point M. Si on rameéne une charge g
au point M, | énergie potentielle du systéme de deux charges s'écrit:

E = qzvl = Kq1q2

P r




11- Energie interne d'un systéme de N charges ponctuelles

C- Energie interne d'un systeme de trois charges

Soit un systéme constitué de trois charges ponctuelles, son énergie interne
s'écrit:

Kag, , Kag, , Kag,
r I I

12 13 23

U=

D- Energie interne d'un systéme de N charges

Soit un systéme constitué par N charges ponctuelles, son énergie interne
s'écrit:

qu

|1|¢le



12- Dipole électrique

A- Définition

Soient deux charges ponctuelles q égales et de signes opposés, placés a une
distance d 'une de l'autre. Le moment dipolaire électrique est:
4 5
® \ hg p=qd

Positive side

B-Exemples de dipdles électriques

Hydrogen
drogen

Hydro
e Hen



C- Potentiel électrique créé par un dipale :

v=v +v =R_Ka_ ol
r+ r r+ r

En réduisant au méme dénominateur on a:

r—r,
rr

+ -

V == Kq( )

Pour que notre systéme forme un dipdle il faut que .

r,retr>d




C- Potentiel électrique créé par un dipale :

En zoomant au voisinage des charges on a:

2

r—r.,=dcos@ et rr =r

dcosd Kpcosd

V — r2 r2




D- Champ électrique créé par un dipdle :

En utilisant les coordonnées polaires on peut écrire

oo
E =—gradV = | or
16V
E,=—=-2_
\ r 00
K
E=E’+E. =—>\1+3c05’ 0
( 2Kpcosé r
g =“0P°
=1 Kosing
psin
E0=F—3




un dipdle :

ignes de champs d'

w




F- Action d'un champ électrique extérieur sur un dipole

P

e

En mettant le dipdle dans une région ou regne un champ électrique uniforme, il y
a création d'un moment du couple et d'une énergie potentielle

Energie potentielle

Elle s'écrit sous la forme :

E =—E.p=E, =-E pcosé

P



F- Action d'un champ électrique extérieur sur un dipole

On trace le graphe de E, en fonctior A= A
A E.(J)

Les extremums de E, correspondent a

des positions d'équilibre 0 (rd)
>

- Minimum 0 =0 : équilibre stable

- Maximum 0 =r : équilibre instable



F- Action d'un champ électrique extérieur sur un dipole

Moment du couple

Le moment du couple est donné par la relation 7= PXE

- Son module s'écrit: 7= pESIN@
- Propriétés:
> 71p et TLE

> le sens et la direction sont obtenues en utilisant la regle de la main droite

5_7 p i
7 p 'F@L'E 2\



F- Action d'un champ électrique extérieur sur un dipole

> Positions d'équilibre

£

=%
—_ —
o o
-~ Sy 1Y \
g ! X
. Ve & & &
> Positions d'équilibre stable ® =
e e p \\
,(5” - X
. )
S —f I
=i = (a)
G e 2
s - Mo il
— :7-\(
—+ -+ -+




Exercice d'application

Un dipéle , de moment dipolaire p, est placé au centre d'un cercle de rayon R.
donnez les expressions du potentiel et champ électriques créés par ce dip6le aux
points A, B, C et D.

— ’E _ 2Kpcos@ A
kpeosd  go|T T ¢ :
= 1

I

V

r2 E=KpsintS?
6 I,3

EnA: 6=0=V,=Pe E—g = 2KP
R R

Kp

EnB: 0=7z/2=V,=0et E,=E,=—
R

EnC: 49=7r=>VC=—K—E)et EC=Er=—2K3p
R R

Kp

EnD: 0=-z/2=V_ =0et E =E, =——-



b | Friedrich
Gauss

Représentation vectorielle d'une surface

Le vecteur élément de surface s'écrit en fonction du vecteur normal a la surface

dS = dS i

ds, I

Angle solide o

Cine 1ssu de (0

et s'appuyant sur dS S

_0.dS  udScosd
7 Q=[[dQ=4z

dQ



12- Théoréme de Gauss

K | Friedrich
Gauss
Flux du champ a travers une surface fermée
dd=E.dS et c1>=j E dS
A T | :
_____ S \\ \/\" S I i 3
—rP_ > i
_____ Em \ \\E ( —»)
:@::: ~)
(D:Eﬁ:ES (I):]_"j§ (I):]:Zéz()

= ES cos 45°



12- Théoréme de Gauss

A- Cas de charge q a l'intérieur de la surface
Le flux du champ crée par la charge q a travers la surface S est:
. . 1 gq.
E 0= [[EdS E=— 13
drg, 1
i
JASg" q,=ﬂiiu 45 = HUdS
1 dre, 1° Are,
7o
//\/)AQ
q /-
& o=—1 j do=1
= dre, g,

Frledrlch
Gauss



Friedricﬁ
Gauss




12- Théoréme de Gauss

K | Friedrich

Gauss
C- Enoncé du théoréme de Gauss

Le flux du champ a travers la surface S fermée est:

0-[[Ed5-2%

&

g, sont les charges a | "intérieur de la surface de Gauss



D- Applications

1- Plan infini uniformément chargé

»Champ électrique

Le champ électrique est perpendiculaire au plan chargé

La surface de Gauss choisie est un cylindre de rayon r
Ily a deux flux a travers les deux surfaces de base

® =ES et @ =ES O=0 +0,=2ES

>4, = [ s =08 : G

0=285=2> g9

& 28

Frledrlch

. Gauss
+
4 —0
i _/"
¥ & ”’/‘ *
¥ 4 A
¥ t * ™
5 4 4 ¥
4 ¥
? = //—( yAUsSsSian
¥ ¥ 4 surface
£ T p—
0 i s e T
nt A l. ‘ L“‘;D
¥ & *"—7'—--{ &
& + &
4 ¥
|
|
(a)
—_—— i
4 ' ] dS
= T g
E 4 E
——— -




12- Théoréme de Gauss
| Friedrich
Gauss
»Potentiel électrique
e e ] & ]

La relation entre le champ électrique et le potentiel est:

dV =—E.dl =—Edy

En intégrant suivant oy on obtient:



12- Théoreme de Gauss
2- Sphere de rayon R uniformément chargé . Gauss

»Champ électrique

Le champ électrique, dans ce cas, est radial

La surface de Gauss choisie est une sphére de rayon r

Le flux du champ a travers cette surface s'écrit:

o=[[EdS=[[Eds

Le champ électrique est constant le long de la surface S

<I>=EHdS=ES=E47zr2



+ 4"
Surface de Gauss tel que r> R

>4,.=[[ods =5 =Q

[ Edzr=

Friedrich
Gauss

G0 .

£ | I\, Fonction én

% e N\

2g, - |
! |
—'—n} ------------ }-
0 | r



‘ 12- Théoreme de Gauss
. | Friedrich
" ; . Gauss
» Potentiel électrique

La relation entre le champ électrique et le potentiel est:

dV =—E.dl =—Edr

p VIO i
r< R E1 = O:}V1 — Cl , : E ﬂ.-l_.l
Q '|r’] I | i':ll] - = R
r>R V2=—IE2dr=—j4ﬂ8 = dr | :
0 .
|
v.=—2 ¢ |
Conditions aux limites: 2= ey +L, |
0

V,(0)=0=C, =0

_ _Q
Vl(R)_VZ(R):Cl - dre R

0




Surface de Gauss tel que r<R Q= H E.dS=

Y 0, = m pdV = pjor &V G =p% -

Edzxr’ =pi7tr3

3¢,

Surface de Gauss tel que r> R

'; 3
DEar=Y e Y AR
' dre,r”  3g,r

12- Théoréme de Gauss

-~ > q,.= [[[ eav =p[ av Zqim=p%ﬂR3=

Friedrich
Gauss

Y 4.,

&

Répartition volumique
A Er

Fonction en



» Potentiel électrique

12- Théoréme de Gauss

Friedrich
Gauss

La relation entre le champ électrique et le potentiel est:

dV =—E.dl =—Edr

r<R E1=3ir=>v1=—6£r2+cl
& &

0 0

3
V=pR+C

2
3g,r

r> R

2

Conditions aux limites:

¥irl

Fonclion €

! Portion de 1

| parabole

&



12- Théoréme de Gauss

Frledrlch

3- Fil infini uniformément chargé :  Gauss
»Champ électrique Canrminm ]
) . . werfare p 1. --_-"-,
Le champ électrique, dans ce cas, est radial \\.u_ H-l.__,.
La surface de Gauss choisie est un cylindre de rayon r o L
. I 11 == 2
Le flux du champ & travers cette surface s'écrit: | =
o=[[EdS=[[Eds ©=E[[ds=ES=E 241 w

Les charges a l'intérieur de la surface de Gauss sont:

>0, =[ 4di=21=Q A

& HEdS qut E 271l = ﬂ_':E_L f

277"‘90 r 4 hY




| 12- Théoréme de Gauss
| Friedrich
W . . Gauss
» Potentiel électrique

La relation entre le champ électrique et le potentiel est:

dV =—E.dl =—Edr

En intégrant en fonction de r on obtient:

V=- Ldr=—ilnr+Cte

27e, I 27,



