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1- FORCE ELECTRIQUE (N) 

q1 

 
q2 

 r 

La force F1 appliquée par q1 sur q2 :  

La force F2 appliquée par q2 sur q1 :  



-q1 -q2 

Deux charges de mêmes signes se repoussent et deux charges 
de signes contraires s’attirent 

1- FORCE ELECTRIQUE (N) 



2- ANALOGIE 

Force  Gravitationnelle (Newton)  Force Electricité  (Coulomb) 

Q 
 

q 
 r 

Force gravitationnelle: 

Champ gravitationnel: 

Force électrique: 

Champ électrique: 



2- CHAMP ELECTRIQUE (V/m) 

Q 
r 

M 
x 

M 
x M 
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Le champ est sortant Le champ est rentrant 



3- ENERGIE POTENTIELLE ELECTRIQUE (J) 

 L’énergie potentielle électrique est le travail nécessaire à la force 
électrique  pour ramener une charge ponctuelle (q)de l’infini jusqu’à une 
distance r d’une autre charge Q. 

Alors: 

4- POTENTIEL ELECTRIQUE (V) 

De même que pour la force, il y a une relation entre le potentiel et 
l’énergie potentielle 
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5- RESUME 



6- PRINCIPE DE SUPERPOSITION 

On considère un ensemble de N charges ponctuelles, on cherche le 
champ crée par toutes ces charges en un point M de l’espace.  

Le potentiel crée au point M s’écrit: 

Si on met une charge Q au point M, la force  
créée est: 

Et l’énergie potentielle en ce point est: 



EXERCICE  D’APPLICATION 

Soient deux charges ponctuelles q1=5C et q2= -2C , placées au 
sommet d’un triangle rectangle  isocèle de côté a = 0.1 m(voir figure). 
1- Calculer et représenter le champ électrique crée par ces charges 
sur l’autre sommet 
2- Déterminer le potentiel en ce point  
3- On place en ce point une troisième charge q3=5C , déduire la force 
et l’énergie potentielle en ce point. 

M 



M 

Corrigé 

1- Calcul du champ électrique: 

Echelle : 1 cm           9 105  V/m 

(2.5 cm) 

(2 cm) 



2- Calcul du potentiel : 

3-  a- Calcul de la force électrique  : 

3-  b- Calcul de l’énergie potentielle : 

  



7- CAS DE DISTRIBUTION CONTINUES 

C- densité volumique : 

B- densité surfacique: 

A- densité linéaire: 



8- RELATIONS ENTRE LE CHAMPS   E  ET LE POTENTIEL V 

Nous partons des relations connues en mécanique entre la force et l’énergie 
potentielle 

et 

Et sachant que : 

et 

On remplace dans les deux première expressions et on simplifie par Q on a:  

et 



9- LIGNES DE CHAMPS   ET EQUIPOTENTIELLES 

A- LIGNES DE CHAMPS  

B- EQUIPOTENTIELLES  

Les lignes de champs électrique sont des surfaces sur lesquelles le champ E 
est tangent 

Ce sont des surfaces sur lesquelles le potentiel V est constant 



PROPRIETES : 

Les lignes de champs sont perpendiculaires aux équipotentielles 
 

 
 Les lignes de champs vont du potentiel le plus grand au plus petit 



EXEMPLE DE LIGNES DE CHAMPS ET EQUIPOTENTIELLES 
POUR DES DISTRIBUTIONS DE CHARGES 

Charge ponctuelle positive 

Deux charges ponctuelles opposées 

Champ électrique constant horizontal 



10- EXEMPLES DE CALCUL DE CHAMPS ET DE 
POTENTIEL DE CHARGES CONTINUES 

a- Fils chargé uniformément de densité  (C/m) 

y 

x 1 
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Le champ crée par un élément dy au point M s’écrit: 
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On décompose suivant ox et oy on obtient: 

xd E

yd E d E

On exprime tout en fonction de l’angle  : 
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On obtient alors en remplaçant 
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a- Fils chargé uniformément de densité  (C/m) 

En intégrant entre 1 et 2 on a : 

2 1
(sin sin )
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•Si le fil est infini , c’est-à-dire  1 22 2
et     et enfin : 

0
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 Potentiel crée par un fils infini à une distance x du fils  
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a- Fils chargé uniformément de densité  (C/m) 



b-Disque de rayon R, chargé uniformément de densité  (C/m2) 

Le champ crée par un élément dS au point M s’écrit: 

2 2

Kdq K dS
d E u u

r r


 

M 

dq R 

d E

En prenant une élément symétrique à dS on obtient un autre 
champ, ce qui donne une composante globale suivant l’axe oy 

dq 

d E

x 

z 

x 

On introduit un élément de surface dS sous forme d’une 
couronne  

Cette couronne de rayon x et largeur dx s’écrit:  

2dS xdx

L’élément de champ dE créé par cette couronne s’écrit: 

2

2K xdx
dE

r

 


 

 

r 

y 



En décomposant les champs suivant ox et oy on constate que : 

sin
x

dE dE  cos
y

dE dE 

De plus, par raison de symétrie, la composante du 
champ total  suivant ox est nulle 

Donc le champ total est suivant oy et s’écrit: 

y
E dE 

b-Disque de rayon R, chargé uniformément de densité  (C/m2) 
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Ecrivant la composante du champ suivant oy  
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cos cos
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K xdx
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Exprimons cette composante en fonction d’une seule variable x qui varie 
entre 0 et R 
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Elle prend la forme: 

 
3 / 2

2 2
0

2
y

yxdx
dE

y x








b-Disque de rayon R, chargé uniformément de densité  (C/m2) 



Le champ total suivant oy s’écrit donc: 
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Pour faire cette intégrale on fait le changement de variable suivant: 

2 2
2U y x dU xdx   
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0
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x U y
avec les bornes
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L’intégrale devient plus simple et s’écrit: 
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b-Disque de rayon R, chargé uniformément de densité  (C/m2) 
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Le résultat s’écrit sous la forme: 
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On obtient  alors deux champs : 

Pour y  0 on a:  y=y 
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Pour y  0 on a :  y=-y 
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b-Disque de rayon R, chargé uniformément de densité  (C/m2) 



 Potentiel crée par un disque uniformément chargé 

A- Méthode directe: 

Kdq K dS
dV

r r


 

On prend la même surface que pour le champ et  exprime en fonction de x et y 
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Ce qui donne: 
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En intégrant on obtient: 
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En faisant le même changement de variable que pour E on a: 
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 Potentiel crée par un disque uniformément chargé 



On a donc deux potentiels :  

Pour y  0 on a:  y=y 
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Pour y  0 on a :  y=-y 

2 2

0

( )
2

V y R y



   
 

0
2

R



( )V V

( )y m

 Potentiel crée par un disque uniformément chargé 



B- Méthode à partir du champ électrique: 

On prend uniquement le cas   ou y est positif :  

.dV E dl Edy   

2 2

0

1
2 ( )

y
V Edy dy

y R





 
     

  
  2 2

0
2 ( )

ydy
V dy

y R





 
   

  
 

En faisant le même changement de variables on obtient: 
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La constante s’annule en posant comme référence V()=0 

 Potentiel crée par un disque uniformément chargé 



Cas particulier  

Si le rayon est très grand (R tend vers l’infini), le disque devient un plan infini 

0
2

E



Le champ devient: Il est indépendant de y 

.dV E dl Edy   

Le potentiel quand à lui devient: 
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REMARQUE: 



11- Energie interne d’un système de N charges ponctuelles 

A- Energie potentielle  

. .

M M M

W F dl qE dl q dV
  

     

Soit une charge q soumise à une force électrostatique               . On la déplace 
de l’infini à un point M de potentiel VM 

F qE

pM M
E qV

B- Energie interne d’un système de deux charges  

Soit une charge q1 qui a un potentiel V1 en un point M. Si on ramène une charge q2 
au point M, l’ énergie potentielle du système de deux charges s’écrit: 

1 2

2 1p

Kq q
E q V

r
 

Cette quantité est l’énergie interne du système de deux charges notée U  



C- Energie interne d’un système de trois charges  

Soit un système constitué de trois charges ponctuelles, son énergie interne 
s’écrit:  

1 3 2 31 2

12 13 23

Kq q Kq qKq q
U

r r r
  

11- Energie interne d’un système de N charges ponctuelles 

D- Energie interne d’un système de N charges  

Soit un système constitué par N charges ponctuelles, son énergie interne 
s’écrit:  

1 1

1

2

N N

i j

i i j j ij

Kq q
U

r  

 



12- Dipôle électrique 

A- Définition 

Soient deux charges ponctuelles q égales et de signes opposés, placés à une 
distance d l’une de l’autre. Le moment dipolaire électrique est:  

p qd
p

d

qq

B-Exemples de dipôles électriques 



C- Potentiel  électrique créé par un dipôle : 

1 1
( )

Kq Kq
V V V Kq

r r r r
 

   
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En réduisant au même dénominateur on a: 
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r r

V Kq
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 

 


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Pour que notre système forme un dipôle il faut que :  

,r r et r d
 



En zoomant au voisinage des charges on a:  

2
cosr r d et r r r

   
 

2 2

cos cosd Kp
V Kq

r r

 
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C- Potentiel  électrique créé par un dipôle : 



D- Champ électrique créé par un dipôle : 

En utilisant les coordonnées polaires on peut écrire 
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E-  lignes de champs  d’un dipôle : 



F-  Action d’un champ électrique extérieur sur un dipôle 

p

En mettant le dipôle dans une région ou règne un champ électrique uniforme, il y 
a création d’un moment du couple et d’une énergie potentielle  

Energie potentielle  

Elle s’écrit sous la forme : 

. cos
p p

E E p E E p     



On trace le graphe de Ep en fonction de  
Ep(J) 

- 0 

 (rd) 

 

Les extremums  de  Ep correspondent à 
des positions d’équilibre  

- Minimum  =0 : équilibre stable   

- Maximum   = : équilibre instable   

F-  Action d’un champ électrique extérieur sur un dipôle 



Moment du couple  

Le moment du couple est donné par la relation  p E  

- Son module s’écrit : sinp E 

- Propriétés: 

  p et E  

  le sens et la direction sont obtenues en utilisant la règle de la main droite  



E

p

 

E

p

p

E

F-  Action d’un champ électrique extérieur sur un dipôle 



 Positions d’équilibre 

E

pp




p




p

E

F

F

F

F

 Positions d’équilibre stable 

 Positions d’équilibre instable 

F-  Action d’un champ électrique extérieur sur un dipôle 



Exercice d’application 

Un dipôle , de moment dipolaire p, est placé au centre d’un cercle de rayon R. 
donnez les expressions du potentiel et champ électriques créés par ce dipôle aux 
points A, B, C  et D. 
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12- Théorème de Gauss 

Représentation vectorielle d’une surface 

dS n
dS

dS dS n

Le vecteur élément de surface s’écrit en fonction du vecteur normal à la surface 

Angle solide 

2 2

. . cosu dS u dS
d

r r


  

4d    



Flux du champ à travers une surface fermée 

.d E dS  .et E dS  

12- Théorème de Gauss 



A- Cas de charge q à l’intérieur de la surface 

.E dS  

Le flux du champ crée par la charge q à travers la surface S est: 
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1
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q
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r
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q q u dS
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q q
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   

12- Théorème de Gauss 

S



12- Théorème de Gauss 

B- Cas de charge q à l’extérieur de la surface 

Il y a deux flux puisqu’il deux surfaces dSs et dSe traversées par le champ 
de q   

1

0

.
4

s q
E dS d


    

2

0

'.
4

e q
E dS d


     

1 2
0    



C- Enoncé du théorème de Gauss 

int

0

.
q

E dS


  




int
arg 'intq sont les ch es à l érieur de la surface de Gauss

Le flux du champ à travers la surface S fermée  est: 

12- Théorème de Gauss 



Il y a deux flux à travers les deux surfaces de base 

D- Applications 

1- Plan infini uniformément chargé 

1 2
ES et ES    1 2

2ES   

int
q dS S   

0

2
S

ES



  

0
2

E



 

Champ électrique 

Le champ électrique est perpendiculaire au plan chargé 

La surface de Gauss choisie est un cylindre de rayon r 

dSdS

12- Théorème de Gauss 



Potentiel électrique 

.dV E dl Edy   

0 0
2 2

y
V dy cte

 

 
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E E

E

E

E
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12- Théorème de Gauss 

La relation entre le champ électrique et le potentiel est: 

En intégrant suivant oy on obtient: 



2- Sphère de rayon R uniformément chargé 

Le champ électrique, dans ce cas, est radial 

La surface de Gauss choisie est une sphère de rayon r 

Le flux  du champ à travers cette surface s’écrit: 

. .E dS E dS   

Le champ électrique est constant le long de la surface S 

2
4E dS ES E r   

E
dS

Champ électrique 
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a- Cas d’une distribution de charges en surface : 

Surface de Gauss tel que r R 

Surface de Gauss tel que r R 

int
0q dS  

int
q dS S Q    

int

0

.
q

E dS


  




2

0

4
Q

E r




0E 

2

0
4

Q
E

r
 

+ 

+ 

+ 
+ 

+ + 

+ + 

+ 

+ 
+ + 

+ 
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Potentiel électrique 

.dV E dl Edr   

2 2 2

0
4

Q
V E dr dr

r
    

r R 
1 1 1

0E V C  

r R 

2 2

0
4

Q
V C

r
 Conditions aux limites: 

2 2

1 2 1

0

( ) 0 0

( ) ( )
4

V C

Q
V R V R C

R

   

  
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La relation entre le champ électrique et le potentiel est: 



a- Cas d’une distribution de charges en volume : 

Surface de Gauss tel que r R 

Surface de Gauss tel que r R 

int
0

r

q dV dV    

int
0

R

q dV dV    

int

0

.
q
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
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4 3

Q R
E

r r



 
  
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+ 
+ 

+ 
+ 

+ 
+ 
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+ + 
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+ + 

+ 

+ 
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+ 
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+ 
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+ 

+ 

+ 

+ 
+ 

3

int

4

3
q r 

0
3

E r





3

int

4

3
q R Q  
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Potentiel électrique 

.dV E dl Edr   

r R 2

1 1 1

0 0
3 6

E r V r C
 

 
    

r R 
3

2 2

0
3

R
V C

r




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Conditions aux limites: 
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
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  
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La relation entre le champ électrique et le potentiel est: 



3- Fil infini  uniformément chargé 

Le champ électrique, dans ce cas, est radial 

La surface de Gauss choisie est un cylindre de rayon r 

Le flux  du champ à travers cette surface s’écrit: 

. .E dS E dS   

Champ électrique 

E

dS

E

2E dS ES E rl   

Les charges à l’intérieur de la surface de Gauss sont: 

int
q dl l Q    

int

0

.
q

E dS


  



0 0

2
2

l
E rl E

r

 


 
  
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Potentiel électrique 

.dV E dl Edr   

0 0

ln
2 2

V dr r Cte
r

 

 
    
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La relation entre le champ électrique et le potentiel est: 

En intégrant  en fonction de r on obtient: 


