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La circulation des charges dans un circuit nécessite la présence d’un générateur de tension 
ou de courant  

1-GENERATEURS  ET RECEPTEURS  

A- GENERATEURS  

Il existe plusieurs types de générateurs:  
 - Générateur électrostatique : Van Der Graff 
 - Générateurs électrochimiques : Piles 

Générateur électrostatique 
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Les charges arrivent à l’intérieur d’une sphère métallique (1) 
(par l’intermédiaire de la courroie).  
 
Ces charges produisent par influence des charges opposées –Q 
sur la face interne et +Q sur la externe de cette sphère. 

Le potentiel de la sphère s’ élève . Entre (1) et le sol apparait un champ électrique E. 

Si on relie la sphère (1) et le sol à travers une résistance R , un courant circule dans R 
dans le sens du champ E 
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Fonctionnement de la pile 

Étude des deux demi-piles :  

•Demi-pile du zinc : 
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•Demi-pile de cuivre : 
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•d.d.p aux bornes de la pile : 
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Pile Daniell 
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-  Force électromotrice (f.e.m) et Schéma équivalent d’un générateur 

* La f.e.m d’un générateur est la tension à ses bornes en absence de courant notée : E 

r: résistance interne du générateur 

* Schéma équivalent , On représente le générateur de la façon suivante : 
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-  Bilan énergétique: 
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Energie fournie par le générateur: 

Energie consommée aux bornes du générateur: 

Energie consommée par effet joule dans r: 
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-  Tension aux bornes du générateur 
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-  Rendement d’un générateur 
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-  Bilan énergétique: 

-  Bilan énergétique: 

Il y a conservation de l’énergie donc: 
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En simplifiant par le courant I on obtient: 
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*En parallèle  
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-  Association de générateurs 

*En série  
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-  Générateur de courant : 

Un générateur de courant est un élément qui fournit un courant constant quelque soit la valeur 
de la résistance du circuit extérieur . Il faut donc que: r>> R. 
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On le schématise par le symbole:  

E
r R I Cte

r
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Lorsque le générateur est relié à une résistance externe R, le courant qui circule 
dans ce circuit est: 
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B- RECEPTEURS  

-  Définition  

C’est un appareil qui reçoit de l’énergie électrique et qui la transforme en une autre forme 
d’énergie ( mécanique, chimique,…) 

-  Exemple de récepteur  



-  Force contre électromotrice (f.c.e.m) et Schéma équivalent d’un récepteur 

* La f.c.e.m d’un récepteur est la tension à ses bornes en absence de courant notée : e 

r: résistance interne du récepteur 

* Schéma équivalent , On représente le récepteur de la façon suivante : 

A                          B 
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(VA –VB) 

-  Bilan énergétique: 
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Energie fournie aux bornes du récepteur : 

Energie consommée par le récepteur: 

Energie consommée par effet joule dans r: 

On branche aux bornes du récepteur une tension (VA –VB) 
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-  Tension aux bornes du récepteur 
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-  Rendement d’un récepteur 
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-  Bilan énergétique: 

Il y a conservation de l’énergie donc: 
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En simplifiant par le courant I on obtient: 
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C- RESISTANCE STATIQUE ET DYNAMIQUE 

* Resistance statique d’un dipôle passif    =                          = pente de la droite OA  

* Resistance dynamique d’un dipôle passif =                       = pente de la tangente en A  
D
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Si on trace la caractéristique V=f(I) d’un élément électrique on obtient: 



2- LES LOIS DE KIRCHOFF  

A- DEFINITIONS DES ELEMENTS DU CIRCUIT 

* Une branche: est une portion d’un circuit comprise entre 
deux points contenant des éléments en série 

* Un nœud: est un point commun à 3 branches au moins 

* Une maille: est ensemble d’éléments formant un boucle 
fermée. 
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B- LOIS DE KIRCHOFF 

-  Lois des nœuds: 

La somme des courants qui arrivent sur le nœud = somme des courants qui partent du nœud 
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-  Lois des mailles: 
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Exercice d’Application 

Soit le circuit électrique formé par deux générateurs et trois résistances. Déterminer les 
expressions des courants qui traversent les branches du circuit. 

-  Lois des nœuds: 

-  Lois des mailles: 
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On aboutit à un système de trois équations à trois inconnues:  
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Sous forme de matrice on a: 
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Le déterminant de la matrice est : 

1 2 1 3 2 3
( )Det R R R R R R   

Corrigé de l’exercice d’Application 



Les courants sont : 
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En développant les éléments de matrice on obtient: 

Corrigé de l’exercice d’Application 



3- CHARGE ET DECHARGE DE CONDENSATEURS 

A- CHARGE DU CONDENSATEUR  

On met l’interrupteur K en position 1, le circuit devient: 

Si on suppose qu’à t =0, q = 0,  condensateur C se charge  

L’équation de la maille s’écrit: 

0
q
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Le courant qui traverse le condensateur s’écrit comme :  
dq

i
dt



On aboutit à l’équation différentielle du premier degré avec second membre suivante: 

dq q
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-  Expression de la charge q(t): 
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La solution générale est la somme de deux solutions: 

( ) ( ) ( )
p sm

q t q t q t 

Solution particulière,  quand q = constante donc : 
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Solution sans second membre:  
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On fait une séparation des variables et on intègre  
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Finalement la solution devient : 
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En utilisant la condition initiale Q(0)=0 on a: 
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A- CHARGE DU CONDENSATEUR  

La solution générale s’écrit maintenant: 
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Qui peut s’écrire sous la forme : 
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Q CE      : La charge finale du condensateur 

: La constante de temps du condensateur  



A- CHARGE DU CONDENSATEUR  

-  Expression du courant i(t): 
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En dérivant l’expression de la charge q(t) on a: 



B- DECHARGE DU CONDENSATEUR  

On met l’interrupteur K en position 1, le circuit devient: 

-  Expression de la charge q(t): 

à t =0, q = Qf,  condensateur C se décharge  

L’équation de la maille s’écrit: 

Le courant  de décharge s’écrit comme :  

On aboutit à l’équation différentielle du premier degré sans second membre suivante: 

La solution générale s’écrit maintenant: 
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La solution générale s’écrit maintenant: 

-  Expression du courant i(t): 

En dérivant l’expression de la charge q(t) on a: 
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En utilisant la condition  à t =0, q = Qf on a: 
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On dessine maintenant, les courbes q(t) et i(t) lors de la charge et la décharge de C 

Charge de C en fonction du temps 

Lors de la charge  Lors de la décharge  

Courant de C en fonction du temps 

Lors de la charge  Lors de la décharge  

-  Graphe de la charge et du courant en fonction du temps 



C- BILAN  ENERGETIQUE 

-  Au cours de la charge 

Energie emmagasinée dans le condensateur: 
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Energie débitée par le générateur : 
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Energie dissipée par effet joule dans la résistance : 
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Bilan énergétique s’écrit alors: 

E C R
W W W 



-  Au cours de la décharge 

Energie fournie par le condensateur: 

Energie dissipée par effet joule dans la résistance : 

Bilan  énergétique s’écrit alors:  

C- BILAN  ENERGETIQUE 
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