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L’interaction magnétique est la propriété que possèdent certains corps pour attirer des 
morceaux de fer. 

I- Interaction Magnétique 

I-1- Définitions:  

Ces corps sont appelés : corps magnétique ou aimants 

Sur ces aimants il y a deux régions ou l’interaction magnétique est la plus intense : les pôles 

 Si on rapproche deux barreaux magnétiques A et B l’un de l’autre on constate qu’un pôle de A 
attire un pôle de B et repousse l’autre.    

Les pôles d’un même aimant sont donc différents : l’un est le pôle Nord, l’autre le pôle Sud 



I-2- Induction magnétique:  

Nous caractérisons l’espace autour d’un aimant par un champ magnétique (comme pour le champ 
de gravitation et électrique) 

Pour cela, on place des morceaux de limaille de fer sur une feuille de papier. On place ensuite un 
aimant au centre de la feuille. 

On constate que les morceaux de limaille se comportent comme une boussole et s’orientent 
après s’être magnétisés. 

I- Interaction Magnétique 



Les morceaux de limaille après un certain temps forme des lignes particulière dites lignes de 
champ magnétique. 

Les lignes de champ magnétique quittent l’aimant par le pôle Nord et se referment sur le pôle Sud.  

BOn caractérise cet état par un vecteur      tangent aux lignes  de champ  appelé : vecteur 
induction magnétique 

I- Interaction Magnétique 

I-2- Induction magnétique:  



Les interactions électriques et magnétiques sont étroitement liées. 

I-3- Interaction électromagnétique:  

Le magnétisme est une manifestation de la charge électrique en mouvement. 

Pour cette raison ces manifestations sont connues sous le nom d’interactions 
électromagnétiques 

I- Interaction Magnétique 

 Les interactions électriques : entre charges au repos (loi de Coulomb) 

 Les interactions magnétiques : entre charges en mouvement (loi de Laplace) 



II- Action d’un champ magnétique sur une charge en mouvement: 

Soit une charge q qui se déplace avec une vitesse  dans un champ magnétique. Elle est soumise 
à une force :  
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Remarque : 

            donc F v F dl         alors : W(F)=EC =0.   Le mouvement se fait donc à vitesse constante 

II-1- Force qui s’exerce sur une charge en mouvement:  

v



II-2- Mouvement d’une charge dans un champ magnétique constant :  

II-2-a- vitesse perpendiculaire au champ : 

F qv B 

La charge en mouvement dans un champ magnétique constant est soumise à une force : 
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Comme vu précédemment, le mouvement se fait à vitesse constante en module  
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 Le mouvement est donc curviligne uniforme. 



En utilisant la relation fondamentale de la dynamique: 
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Finalement le mouvement est circulaire uniforme. 

Dans un champ magnétique uniforme, une charge animée d’une vitesse v, décrit un mouvement 
circulaire uniforme 
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II-2- Mouvement d’une charge dans un champ magnétique constant :  



II-2-b- fréquence  cyclotron: 

Connaissant la relation entre les vitesses angulaire et linéaire on a: 
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Le sens de la courbure de la trajectoire permet donc de déduire le signe de la charge q. 

II-2- Mouvement d’une charge dans un champ magnétique constant :  
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Vectoriellement la relation s’écrit: 
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II-2-c- vitesse quelconque (non perpendiculaire au champ): 

Dans ce cas on décompose la vitesse en deux : 
 - Une parallèle au champ magnétique 
 - Une perpendiculaire à celui -ci 
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Dans la direction : la vitesse est perpendiculaire à B donc mouvement circulaire 
uniforme (comme on l’a vu précédemment)  

Dans la direction //: 
/ / / /
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Le mouvement est donc rectiligne uniforme dans cette direction 

Le mouvement résultant est donc la combinaison d’une rotation et une translation : 
Mouvement hélicoïdal 

II-2- Mouvement d’une charge dans un champ magnétique constant :  



II-3- Effet Hall normal ou négatif:  

On considère un barreau de forme parallélépipédique parcouru par un courant I.  

I m
F ev B  



Les charges libres, ici les électrons, qui se déplacent dans le sens 
contraire au courant, sont soumis à une force magnétique. 

On le place dans un champ magnétique parallèle à ox. 
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Ces charges négatives vont subirent une déviation dans le sens de 
la force et les charges positives dans le sens contraire 


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Il y a donc accumulation de charges – sur une face et + sur l’autre face. 

Donc création d’un champ électrique de Hall, EH correspondant à une 
tension de Hall, VH 
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Ce champ électrique donne naissance à une force électrique 
opposée à la force magnétique 

e
F eE 

La séparation de charge s’arrête lorsque les deux forces 
deviennent égales en module 
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A l’équilibre on a: 
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II-3- Effet Hall normal ou négatif:  
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Cette expérience permet d’obtenir la densité  n des porteurs de charge.  
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En remplaçant v par son expression on a: 
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B

région I  

région II  

+ 

Exemple: Spectromètre de masse de Dempster 

vIl est constitué de deux régions: 
-région I: dans laquelle on a une accélération des charges 
sous l’action de la force électrique 

-région II:  Le champ magnétique étant sortant, on a une 
déviation sous l’effet de la force magnétique  
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En écrivant la conservation de l’énergie totale on a:  

m
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La trajectoire est circulaire uniforme. 
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En combinant les équations (1) et (2) on a: 
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II- Action d’un champ magnétique sur un courant électrique: 

II-1- Force qui s’exerce sur une charge en mouvement:  

Soit un conducteur cylindrique, parcouru par un courant et  placé dans un champ magnétique 
formant un angle  avec la direction du courant électrique  

S 

dl 
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On note n la densité de porteurs de charges dans un volume dV tel que : 

dV Sdl

Cet élément de volume contient une charge : 

dq nqdV nqSdl 



Chaque charge, dans le champ magnétique est soumise à une force: 

f qv B 

La portion du conducteur est donc soumise à une force : 

dF dqv B 

dF nqSdlv B 

dF Sdl j B 

dF Idl B 

II-1- Force qui s’exerce sur une charge en mouvement:  

En remplaçant  la charge dq par son expression on a : 

En introduisant la densité de courant on a: 

On tient compte finalement du courant ce qui donne: 



II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  

On place un cadre, parcouru par un courant I et mobile autour d’un axe, dans un champ magnétique. 

n est la normale au cadre, perpendiculaire à la surface S du cadre.  

 Est l’angle entre la champ       et la normale   B n



Sur les côtes de longueur a s’appliquent des forces qui ne travaillent pas : 

1
F BIa

Sur les côtes de longueur b s’appliquent des forces qui tendent à faire tourner le cadre: 

2
F BIb

II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  
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Comment fonctionne la rotation du 
cadre   

B 

On place un cadre mobile parcouru par un 
courant  entre les pôles de l’aimant 

II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  
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Voyons comment sont les forces appliquées 
sur chaque côté du cadre 

II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  
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F1 

F2 = I b x B 

F4 = I (-b) x B 

Sur les côtes de longueur b les forces sont:  

F2 

F4 = - F2 

F3 = - F1 

F3 

Sur les côtes de longueur a les forces sont:  
- Les forces F1 et F3 
tendent à déformer le 
cadre 

- Les forces F2 et F4 
tendent à faire tourner  
le cadre 

II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  



II-2-a- Moment du couple : 

 n
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Le moment du couple qui fait tourner le cadre s’écrit :! 

Sachant que la distance d s’écrit :  

sind a 

Donc on obtient  

En posant S=ab on a: 

Le cadre est donc en équilibre 

Lorsque le cadre tourne d’un angle    ,l’angle entre la champ      et la 
normale     est nul: Le moment est nul. 
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II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  



Vectoriellement, la surface s’écrit: 

S S n

Et donc le moment du couple s’exprime comme : 

C ISn B 

sinC ISB 

A partir de cette expression on défini le vecteur moment dipolaire magnétique comme: 

M ISn

Et le moment du couple devient: 

C M B 

II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  



II-2-b- Energie potentielle du cadre dans le champ magnétique: 

.
P

E M B 

Par analogie avec l’énergie potentiel le d’un dipôle électrique dans un champ électrique, 
celle d’un dipôle magnétique dans un champ magnétique s’écrit: 

II-2-c- généralisation 

Un circuit quelconque fermé parcouru par un courant dans un champ magnétique se 
comporte comme un dipôle magnétique et on a: 

M ISn

C M B 

.
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Son moment du couple devient: 

L’énergie potentielle du dipôle dans le champ magnétique est: 

Le moment dipolaire de la boucle est : 

II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  



II-2-d- Applications 

- Moment magnétique dipolaire d’une charge sur une orbite 
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I
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Le mouvement de la charge donne un courant I tel que: 
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q
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Or le moment dipolaire de cette boucle s’écrit: 

2
M IS I r 

En remplaçant I par son expression on obtient: 
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II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  



- Galvanomètre à cadre mobile 

Le moment du couple magnétique s’écrit: 

C M B 

Le moment du couple du ressort s’écrit: 

'C k

: est la déviation de l’aiguille ou rotation du cadre 
k: constante de torsion du ressort  

A l’équilibre C=C ’ : 

MB k ISB k   
k
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II-2- Mouvement d’un cadre parcouru par un courant dans un champ 
magnétique:  



III- Champ magnétique  créé par un courant électrique: 
Loi de BIOT et SAVART 

III-1- Loi de Biot et Savart: 

M
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L’élément de circuit dl parcouru par un courant I crée au point M une induction 
magnétique élémentaire dB telle que: 
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Pour obtenir le champ total  on intègre sur tout le fil parcouru par le courant  



III-2- Champ créé par un fil rectiligne indéfini: 
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On cherche le champ créé par le fil parcouru par un courant I au point M 
situé à une distance R de ce fil. 

En appliquant la règle de la main droite, le champ B est rentrant  

La loi de Biot et Savart donne: 
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On constate que dB dépend de trois variables: dl, r et .  
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On va écrire dB uniquement en fonction de  
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On remplace dans l’expression de dB 
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III-2- Champ créé par un fil rectiligne indéfini: 



Le champ total créé par le fil est donc: 
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III-2- Champ créé par un fil rectiligne indéfini: 

On obtient finalement : 



Le champ magnétique obtenu ne dépend que de R distance du fil au point M. 
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Il est donc constant sur le cercle de rayon R autour du fil. 

Le sens et direction de B sont obtenus en mettant le pouce sur le fil dans la direction du 
courant et les doigts donnent le sens de B 

III-2- Champ créé par un fil rectiligne indéfini: 



III-3- Champ créé par une boucle de courant  suivant son axe: 
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On cherche le champ crée par une boucle de courant I en un point M sur son axe.  

La loi de Biot et Savart donne:  
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Le champ est perpendiculaire à      et à         donc en appliquant la règle de la main 
droite on a::  

u Idl
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IdlSi on prend un élément        symétrique le champ créé sera dans cette direction  



Le champ total est donc suivant l’axe de la spire et on a: 
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III-3- Champ créé par une boucle de courant  suivant son axe: 
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On exprime dans ce cas l’élément de  champ en fonction de R, a et dl: 
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En remplaçant on obtient: 
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Enfin le champ total créé par la spire est obtenu en intégrant: 
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III-3- Champ créé par une boucle de courant  suivant son axe: 



Cas particuliers : 

Au centre de la spire , R=0: 
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Une bobine plate de N spires au centre: 
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Le champ total créé par la spire étant: 
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III-3- Champ créé par une boucle de courant  suivant son axe: 



III-4- Dipôle magnétique: 
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BLe champ créé par la spire sur son axe est: 
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On a vu précédemment que le moment dipolaire d’une boucle de courant est  

2
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Le champ s’écrit alors: 
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Dans le cas ou a << R (même approximation que pour le dipôle électrique) on a: 
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Par analogie avec le dipôle électrique, on peut dire que la boucle de courant est un 
dipôle magnétique 

Si on prend un point M en dehors de l’axe de la spire parcourue par un courant, le 
champ magnétique s ’écrit, en coordonnées polaires: 
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Les lignes de champ sont ainsi: 

III-4- Dipôle magnétique: 



On calcule le champ suivant l’axe du solénoïde en un point P extérieur. 

III-5- Champ créé par un solénoïde: 

On note n, le nombre de spires par unité de longueur 
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On a vu que le champ crée par une spire de courant sur l’axe est : 

 

2

0

3 / 2
2 22

I a
B

a R






Si on prend un élément du solénoïde de longueur dR  contenant  dN spires on a: 
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III-5- Champ créé par un solénoïde: 
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On travaille en fonction de l’angle  
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On remplace ces expression dans celle de dB est on a: 
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III-5- Champ créé par un solénoïde: 



Si le point P est au centre du solénoïde et ce dernier très grand on a: 
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Cas particuliers : 

Pour calculer le champ total, on intègre entre les points extrêmes du solénoïde 
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0
B nI 

III-5- Champ créé par un solénoïde: 



III-6- Action mutuelle entre deux fils parcourus par un courant 

1
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(2)(1)Soient deux fils (1) et (2) parcourus par des courants I1 et I2. 

Comme vu précédemment, chaque fil crée un champ de la forme: 
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R






Le fil (1) crée sur le fil (2) un champ magnétique                 rentrant 0 1
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I
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R




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Le fil (2) crée sur le fil (1) un champ magnétique                 sortant  0 2
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1
B2

B

Un élément de fil de longueur dl est soumis à une force dF telle que: 

Su r le fil (1):  1 1 2
dF I dl B 

1
dF

Su r le fil (2):  2 2 1
dF I dl B 

2
dF

En module, les deux forces sont égales à :  0 1 2

1 2
2

I I
dF dF

R




 

0n a donc attraction entre les deux fils  



Si les courants sont de sens contraire, il y a répulsion 
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2
dF

1
dF

III-6- Action mutuelle entre deux fils parcourus par un courant 




