TRAVAUX PRATIQUES DE PHYSIQUE ETUDE D'UN MOUVEMENT CIRCULAIRE (MG1)

Le document que nous vous proposons d'étudier représente, à l'échelle $\frac{1}{2}$, les positions d'un mobile se déplaçant sur un plan horizontal ; elles sont données à intervalle de temps régulier de 0.02s.

Le mobile, placé au point Po, est lancé avec une vitesse Vo. Il est assujetti à se

déplacer suivant une trajectoire circulaire de centre O.

Pour des résultats de mesure précis, il est recommandé de réaliser avec soin toutes les représentations vectorielles et graphiques.

A) ETUDE VECTORIELLE DU MOUVEMENT :

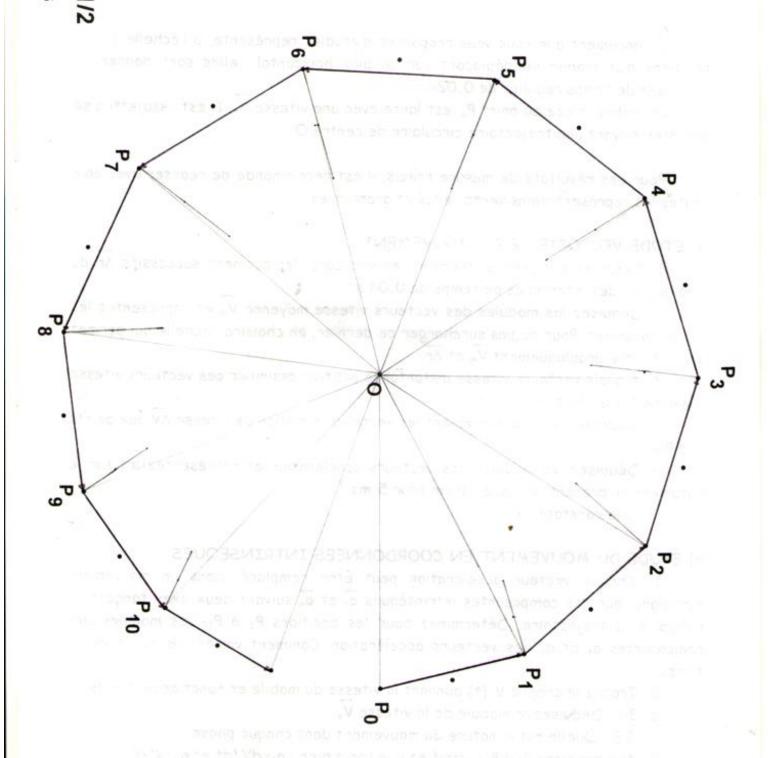
1- Dessinez sur l'enregistrement les vecteurs déplacement successifs Δr du mobile pour des intervalles de temps de 0.04 s.

2- Déduisez les modules des vecteurs vitesse moyenne $\overline{V_m}$ et représentez les sur le document. Pour ne pas surcharger ce dernier, on choisira l'échelle qui permet de confondre graphiquement $\overline{V_m}$ et $\overline{\Delta r}$.

3- A quels vecteurs vitesse instantanée peut-on assimiler ces vecteurs vitesse

moyenne? Justifiez en un point.

4 - Représentez graphiquement les vecteurs variation de vitesse $\overrightarrow{\Delta V}$ aux points P_1 à P_{10} .


5- Déduisez les modules des vecteurs accélération et représentez les sur le document en prenant l'échelle : 1 cm pour 5 ms⁻².

Que constatez-vous?

B) ETUDE DU MOUVEMENT EN COORDONNEES INTRINSEQUES :

- 1- Chaque vecteur accélération peut être remplacé, dans un mouvement curviligne, par ses composantes intrinsèques $\overline{a_1}$ et $\overline{a_n}$ suivant deux axes tangent et normal à la trajectoire. Déterminez pour les positions P_1 à P_{10} les modules des composantes a_1 et a_n des vecteurs accélération. Comment varient-ils au cours du temps?
 - 2- Tracez le graphe V (t) donnant la vitesse du mobile en fonction du temps.
 - 3-3.1 : Déduisez le module de la vitesse \vec{V}_{o} .
 - 3.2 : Quelle est la nature du mouvement dans chaque phase.
 - 3- Aux positions P_1 à P_{10} , vérifiez que l'on a bien : $a_t = dV/dt$ et $a_n = V^2/R$.

TONY AUX PRATIQUES DE PHYSIQUE
-UDE D'UH MOUVEMENT CIRCULAIRE (MGI

(Tx) 7 ch 09 at (m/h) -2.92 9 0 Dr (cm) w(mps) to (x10) dr (mps) to (x10) ar (mps) ar (mps) ar (mps) or (mps) or (mps) or (mps) 40,31 39.41 34,39 ナスナカ 26.41 32.36 7 48.87 3 2,17 3.45 63 2,61 2.58 1.9 2 4 3 4.27 0.5 0 50 ď 0 44.25 33,5 34.5 33.5 374 S S 9 7 3 3 32 8 9 20 -38.H 33. H 41.25 41.25 37.5 27.5 2 99 1.30 580 0 35 1.35 3 7 30 0 178 22 22 艾 20 08 9 2 230 230 2 178 08 0 00 50 X 10,2 de 5 of 5 9 0 on 20 Mourement (194) Or

Prémon:

:woN

Section: Groupe: