TRAVAUX PRATIQUES DE MECANIQUE Cinématique : Etude graphique d'un mouvement circulaire

- A) But du T.P.: Etudes vectorielle et en coordonnées intrinsèques du mouvement circulaire d'un mobile (considéré comme un point matériel),
- notions de vecteurs « position, déplacement, vitesse et accélération » et leur évolution en fonction du temps,
 - Acquisition de savoir-faire théoriques :
 - méthodologie
 - détermination de grandeurs vectorielles
 - tracé de vecteurs
 - tracé de graphe,
 - analyse et interprétation.
- B) Description du dispositif expérimental : La figure 1 ci-dessous représente le schéma du dispositif expérimental. Il est constitué de :
 - une planche inclinée d'un angle α par rapport à l'horizontale,
 - une sonnette électrique,
 - un fil inextensible,
 - un clou.
- C) Description de l'expérience: La manipulation consiste à enregistrer le mouvement de la sonnette sur la planche inclinée. La sonnette est reliée à un clou planté dans la planche au point O par l'intermédiaire d'un fil inextensible. On la place et on la maintient au repos au point P_o. On lâche la sonnette. Le fil restant tendu durant toute l'expérience, elle décrit sur la planche un mouvement circulaire.

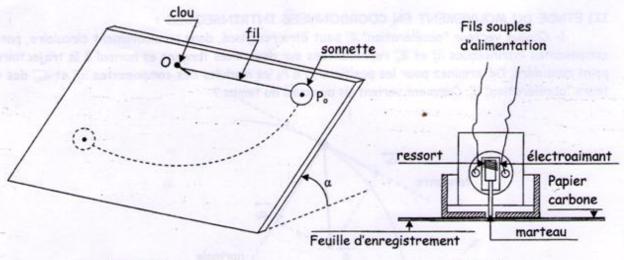


Figure 1 Figure 2

La figure 2 montre un schéma, en coupe, de la sonnette. Elle est fixée sur un disque métallique lisse percé d'un trou; lorsque la sonnette est alimentée, le marteau vibre grâce à l'électroaimant et au ressort de rappel. Passant à travers le trou, il laisse, grâce au papier carbone, des traces sur la feuille d'enregistrement à intervalles de temps réguliers (0.01 s). La sonnette enregistre ainsi son propre mouvement. On connait sa position et l'instant correspondant à sa position.

D) Manipulation : Le document qui vous est proposé, représente à l'échelle 1, l'enregistrement du mouvement de la sonnette.

Réaliser avec soin toutes les représentations vectorielles et graphiques.

I) ETUDE VECTORIELLE DU MOUVEMENT :

- 1- Dessinez sur l'enregistrement les vecteurs « déplacement » $\Delta \vec{r_i}$ successifs de la sonnette pour des intervalles de temps Δt = 0.08 s (voir figure 3).
- 2- En déduire les modules des vecteurs « vitesse moyenne » \vec{V}_{ml} successifs et les confondre aux vecteurs « déplacement » (voir figure 4).
- 3- A quels vecteurs « vitesse instantanée » \vec{V}_i peut-on assimiler ces vecteurs « vitesse moyenne » ? (voir figure 5)
- 4 En utilisant, par commodité, les vecteurs \vec{V}_{ml} et non pas les vecteurs \vec{V}_i , déterminez graphiquement les vecteurs « variation de vitesse » $\Delta \vec{V}_i$ aux points P_1 à P_5 (voir figure 6).

5- En déduire les modules des vecteurs « accélération » $\overrightarrow{a_i}$ et les représenter sur le document en indiquant l'échelle choisie.

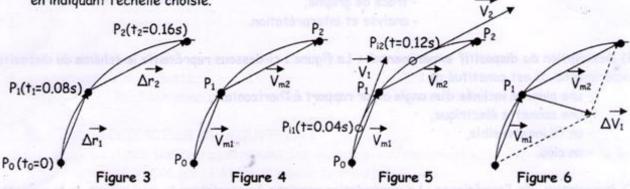


Figure 3: Vecteurs « déplacement » Ar

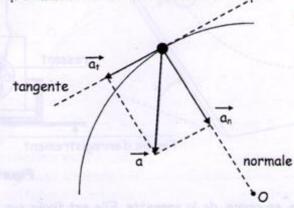

Figure 4: Vecteurs « vitesse moyenne » \vec{V}_{mi} Echelle: 1 cm \longrightarrow (1/ Δ t) cms⁻¹

Figure 5 : Vecteurs « vitesse instantanée » \vec{V}_t

Figure 6 : Vecteur « variation de vitesse » $\Delta \overrightarrow{V_1}$ au point P_1 $(\Delta \overrightarrow{V_1} = \overrightarrow{V}_{m2} - \overrightarrow{V}_{m1})$

II) ETUDE DU MOUVEMENT EN COORDONNEES INTRINSEQUES :

1- Chaque vecteur "accélération" $\overline{a_i}$ peut être remplacé, dans un mouvement circulaire, par ses composantes intrinsèques $\overline{a_t}$ et $\overline{a_n}$ représentées sur deux axes tangent et normal à la trajectoire au point considéré. Déterminez pour les positions P_1 à P_5 les modules des composantes $\overline{a_{tt}}$ et $\overline{a_{nt}}$ des vecteurs "accélération" $\overline{a_t}$. Comment varient-ils au cours du temps ?

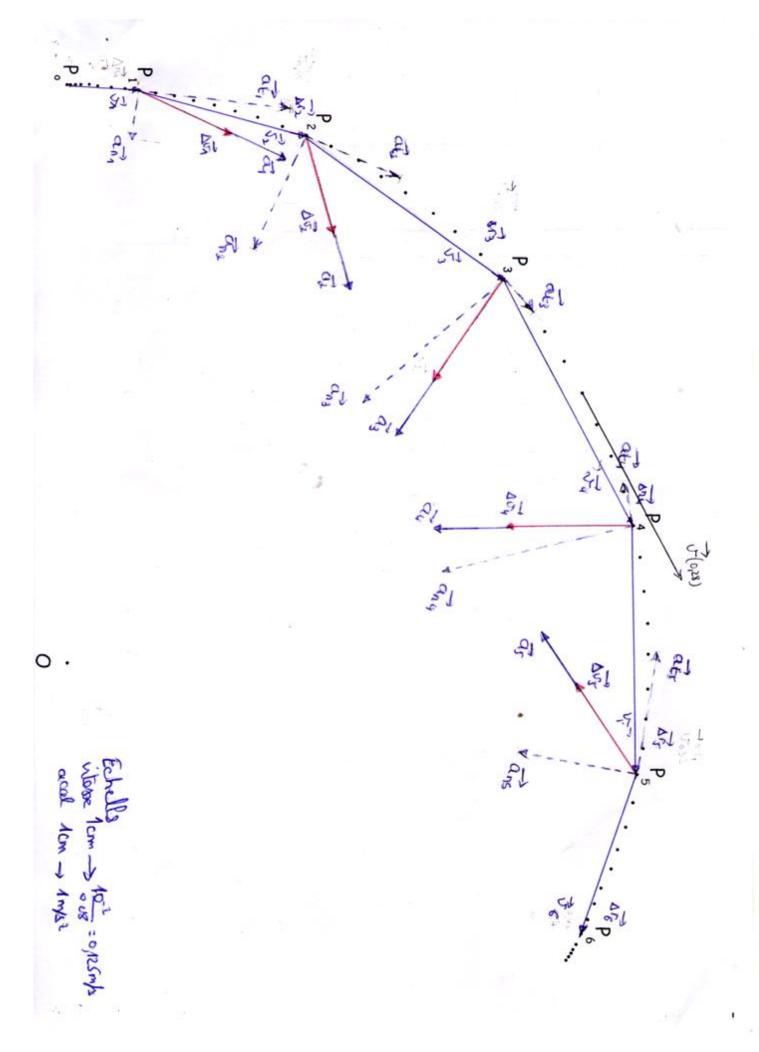
- 2- Tracez le graphe V (t) donnant la vitesse du mobile en fonction du temps. Identifier les phases du mouvement ainsi que leur nature.
- 3- Aux positions P_1 à P_6 vérifiez que l'on a bien: $a_t = \frac{dv}{dt}$ et $a_n = \frac{v^2}{R}$

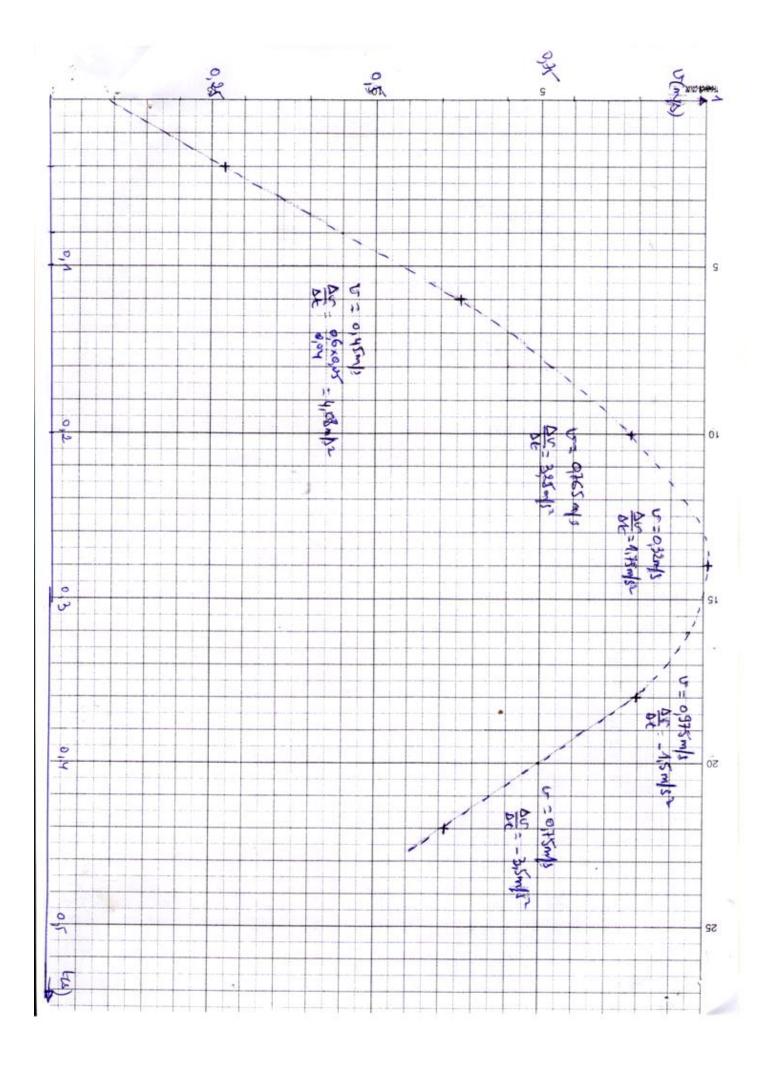
۵°۰۰

ح.

.

.


σ.


•

.

۵...

0

Tum (m/s)	t(s)_	(DF) (ND)	a(m/s)	ak(m/s2)	an(m/s2)	do	or R
U0,08 0,27	0.04			1		(m/s2	R (m)
U = 0,63	912	0,375	4,68	4,5	1,5	4,68	1,19
no 10 = 0'83	0,2	0,375	4.68	3	3,7	3,25	3,44
U-0.16 = 0,02	0,28	0,48	5,62	1,3	5,5	1,75	4,97
- 0,00 = 0,000	9,36	0,46	5,75	-1,3	57	-1,5	2/33
-8145 = 0,61	0,44	0,4	5	- 3,6	376	-345	373

pour le calcul de vet, lire les valeurs dev our le grapole v(t)

Diffue de Via = Viat + tian = Viat.